skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rigidity properties of the cotangent complex
This work concerns a map φ : R → S \varphi \colon R\to S of commutative noetherian rings, locally of finite flat dimension. It is proved that the André-Quillen homology functors are rigid, namely, if D n ( S / R ; − ) = 0 \mathrm {D}_n(S/R;-)=0 for some n ≥ 1 n\ge 1 , then D i ( S / R ; − ) = 0 \mathrm {D}_i(S/R;-)=0 for all i ≥ 2 i\ge 2 and φ {\varphi } is locally complete intersection. This extends Avramov’s theorem that draws the same conclusion assuming D n ( S / R ; − ) \mathrm {D}_n(S/R;-) vanishes for all n ≫ 0 n\gg 0 , confirming a conjecture of Quillen. The rigidity of André-Quillen functors is deduced from a more general result about the higher cotangent modules which answers a question raised by Avramov and Herzog, and subsumes a conjecture of Vasconcelos that was proved recently by the first author. The new insight leading to these results concerns the equivariance of a map from André-Quillen cohomology to Hochschild cohomology defined using the universal Atiyah class of φ \varphi .  more » « less
Award ID(s):
2001368
PAR ID:
10411804
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the American Mathematical Society
Volume:
36
Issue:
1
ISSN:
0894-0347
Page Range / eLocation ID:
291 to 310
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We construct natural operators connecting the cohomology of the moduli spaces of stable Higgs bundles with different ranks and genera which, after numerical specialisation, recover the topological mirror symmetry conjecture of Hausel and Thaddeus concerning $$\mathrm {SL}_n$$ - and $$\mathrm {PGL}_n$$ -Higgs bundles. This provides a complete description of the cohomology of the moduli space of stable $$\mathrm {SL}_n$$ -Higgs bundles in terms of the tautological classes, and gives a new proof of the Hausel–Thaddeus conjecture, which was also proven recently by Gröchenig, Wyss and Ziegler via p -adic integration. Our method is to relate the decomposition theorem for the Hitchin fibration, using vanishing cycle functors, to the decomposition theorem for the twisted Hitchin fibration, whose supports are simpler. 
    more » « less
  2. null (Ed.)
    Abstract The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in pp collisions at $$\sqrt{s} =5.02\ \hbox {TeV}$$ s = 5.02 TeV and p–Pb collisions at $$\sqrt{s_{\mathrm{NN}}} = 5.02\ \hbox {TeV}$$ s NN = 5.02 TeV with the ALICE detector at the LHC is reported. The $$\mathrm{D}^{0}$$ D 0 , $$\mathrm{D}^{+} $$ D + , and $$\mathrm{D}^{*+} $$ D ∗ + mesons, together with their charge conjugates, were reconstructed at midrapidity in the transverse momentum interval $$3< p_\mathrm{T} < 24\ \hbox {GeV}/c$$ 3 < p T < 24 GeV / c and correlated with charged particles having $$p_\mathrm{T} > 0.3\ \hbox {GeV}/c$$ p T > 0.3 GeV / c and pseudorapidity $$|\eta | < 0.8$$ | η | < 0.8 . The properties of the correlation peaks appearing in the near- and away-side regions (for $$\Delta \varphi \approx 0$$ Δ φ ≈ 0 and $$\Delta \varphi \approx \pi $$ Δ φ ≈ π , respectively) were extracted via a fit to the azimuthal correlation functions. The shape of the correlation functions and the near- and away-side peak features are found to be consistent in pp and p–Pb collisions, showing no modifications due to nuclear effects within uncertainties. The results are compared with predictions from Monte Carlo simulations performed with the PYTHIA, POWHEG+PYTHIA, HERWIG, and EPOS 3 event generators. 
    more » « less
  3. Abstract Let $${\mathrm{Diff}}_{0}(N)$$ represent the subgroup of diffeomorphisms that are homotopic to the identity. We show that if $$N$$ is a closed hyperbolic 4-manifold, then $$\pi _{0}{\mathrm{Diff}}_{0}(N)$$ is not finitely generated with similar results holding topologically. This proves in dimension-4 results previously known for $$n$$-dimensional hyperbolic manifolds of dimension $$n\ge 11$$ by Farrell and Jones in 1989 and $$n\ge 10$$ by Farrell and Ontaneda in 2010. Our proof relies on the technical result that $$\pi _{0}{\mathrm{Homeo}}(S^{1}\times D^{3})$$ is not finitely generated, which extends to the topological category smooth results of the authors. We also show that $$\pi _{n-4} {\mathrm{Homeo}}(S^{1} \times D^{n-1})$$ is not finitely generated for $$n \geq 4$$ and in particular $$\pi _{0}{\mathrm{Homeo}}(S^{1}\times D^{3})$$ is not finitely generated. These results are new for $n=4, 5$ and $$7$$. We also introduce higher dimensional barbell maps and establish some of their basic properties. 
    more » « less
  4. Abstract Let 𝔭 be a prime ideal in a commutative noetherian ring R . It is proved that if an R -module M satisfies $${\rm Tor}_n^R $$ ( k (𝔭), M ) = 0 for some n ⩾ R 𝔭 , where k (𝔭) is the residue field at 𝔭, then $${\rm Tor}_i^R $$ ( k (𝔭), M ) = 0 holds for all i ⩾ n . Similar rigidity results concerning $${\rm Tor}_R^{\ast} $$ ( k (𝔭), M ) are proved, and applications to the theory of homological dimensions are explored. 
    more » « less
  5. Let $$\phi(x,y)$$ be a continuous function, smooth away from the diagonal, such that, for some $$\alpha>0$$, the associated generalized Radon transforms \begin{equation} \label{Radon} R_t^{\phi}f(x)=\int_{\phi(x,y)=t} f(y) \psi(y) d\sigma_{x,t}(y) \end{equation} map $$L^2({\mathbb R}^d) \to H^{\alpha}({\mathbb R}^d)$$ for all $t>0$. Let $$E$$ be a compact subset of $${\mathbb R}^d$$ for some $$d \ge 2$$, and suppose that the Hausdorff dimension of $$E$$ is $$>d-\alpha$$. We show that any tree graph $$T$$ on $k+1$ ($$k \ge 1$$) vertices is realizable in $$E$$, in the sense that there exist distinct $$x^1, x^2, \dots, x^{k+1} \in E$$ and $t>0$ such that the $$\phi$$-distance $$\phi(x^i, x^j)$$ is equal to $$t$$ for all pairs $(i,j)$ corresponding to the edges of the graph $$T$$. 
    more » « less