skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The World Still Is Not Flat: Lessons Learned from Organismal Interactions with Environmental Heterogeneity in Terrestrial Environments
Abstract Over the past decade, ecologists and physiologists alike have acknowledged the importance of environmental heterogeneity. Meaningful predictions of the responses of organisms to climate will require an explicit understanding of how organismal behavior and physiology are affected by such heterogeneity. Furthermore, the responses of organisms themselves are quite heterogeneous: physiology and behavior vary over different time scales and across different life stages, and because physiological systems do not operate in isolation of one another, they need to be considered in a more integrated fashion. Here, we review case studies from our laboratories to highlight progress that has been made along these fronts and generalizations that might be made to other systems, particularly in the context of predicting responses to climate change.  more » « less
Award ID(s):
1833590
PAR ID:
10115974
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
59
Issue:
4
ISSN:
1540-7063
Page Range / eLocation ID:
p. 1049-1058
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The rocky intertidal zone is a highly dynamic and thermally variable ecosystem, where the combined influences of solar radiation, air temperature and topography can lead to differences greater than 15°C over the scale of centimetres during aerial exposure at low tide. For most intertidal organisms this small-scale heterogeneity in microclimates can have enormous influences on survival and physiological performance. However, the potential ecological importance of environmental heterogeneity in determining ecological responses to climate change remains poorly understood. We present a novel framework for generating spatially explicit models of microclimate heterogeneity and patterns of thermal physiology among interacting organisms. We used drone photogrammetry to create a topographic map (digital elevation model) at a resolution of 2 × 2 cm from an intertidal site in Massachusetts, which was then fed into to a model of incident solar radiation based on sky view factor and solar position. These data were in turn used to drive a heat budget model that estimated hourly surface temperatures over the course of a year (2017). Body temperature layers were then converted to thermal performance layers for organisms, using thermal performance curves, creating ‘physiological landscapes’ that display spatially and temporally explicit patterns of ‘microrefugia’. Our framework shows how non-linear interactions between these layers lead to predictions about organismal performance and survivorship that are distinct from those made using any individual layer (e.g. topography, temperature) alone. We propose a new metric for quantifying the ‘thermal roughness’ of a site (RqT, the root mean square of spatial deviations in temperature), which can be used to quantify spatial and temporal variability in temperature and performance at the site level. These methods facilitate an exploration of the role of micro-topographic variability in driving organismal vulnerability to environmental change using both spatially explicit and frequency-based approaches. 
    more » « less
  2. Synopsis Anthropogenic change has well-documented impacts on stress physiology and behavior across diverse taxonomic groups. Within individual organisms, physiological and behavioral traits often covary at proximate and ultimate timescales. In the context of global change, this means that impacts on physiology can have downstream impacts on behavior, and vice versa. Because all organisms interact with members of their own species and other species within their communities, the effects of humans on one organism can impose indirect effects on one or more other organisms, resulting in cascading effects across interaction networks. Human-induced changes in the stress physiology of one species and the downstream impacts on behavior can therefore interact with the physiological and behavioral responses of other organisms to alter emergent ecological phenomena. Here, we highlight three scenarios in which the stress physiology and behavior of individuals on different sides of an ecological relationship are interactively impacted by anthropogenic change. We discuss host–parasite/pathogen dynamics, predator–prey relationships, and beneficial partnerships (mutualisms and cooperation) in this framework, considering cases in which the effect of stressors on each type of network may be attenuated or enhanced by interactive changes in behavior and physiology. These examples shed light on the ways that stressors imposed at the level of one individual can impact ecological relationships to trigger downstream consequences for behavioral and ecological dynamics. Ultimately, changes in stress physiology on one or both sides of an ecological interaction can mediate higher-level population and community changes due in part to their cascading impacts on behavior. This framework may prove useful for anticipating and potentially mitigating previously underappreciated ecological responses to anthropogenic perturbations in a rapidly changing world. 
    more » « less
  3. Abstract Carbon‐concentrating mechanisms (CCMs) are a widespread phenomenon in photosynthetic organisms. In vascular plants, the evolution of CCMs ([C44‐carbon compound] and crassulacean acid metabolism [CAM]) is associated with significant shifts, most often to hot, dry and bright, or aquatic environments. If and how CCMs drive distributions of other terrestrial photosynthetic organisms, remains little studied. Lichens are ecologically important obligate symbioses between fungi and photosynthetic organisms. The primary photosynthetic partner in these symbioses can include CCM‐presenting cyanobacteria (as carboxysomes), CCM‐presenting green algae (as pyrenoids) or green algae lacking any CCM. We use an extensive dataset of lichen communities from eastern North America, spanning a wide climatic range, to test the importance of CCMs as predictors of lichen ecology and distribution. We show that the presence or absence of CCMs leads to opposite responses to temperature and precipitation in green algal lichens, and different responses in cyanobacterial lichens. These responses contrast with our understanding of lichen physiology, whereby CCMs mitigate carbon limitation by water saturation at the cost of efficient use of vapor hydration. This study demonstrates that CCM status is a key functional trait in obligate lichen symbioses, equivalent in importance to its role in vascular plants, and central for studying present and future climate responses. 
    more » « less
  4. Abstract Laboratory assays show that parasites often have lower heat tolerance than their hosts. But how physiological tolerances and behavioral responses of hosts and parasites combine to affect their ecological interactions in heterogeneous field environments is largely unknown. We addressed this challenge using the model insect system of the braconid wasp parasitoid,Cotesia congregata, and its caterpillar host,Manduca sexta. We used experimental manipulations of microclimate in the field to determine how elevated daytime temperatures altered the behavior, performance, and survival of host and parasite. Our experimental manipulation increased daily maximum temperatures on host plants, but had negligible effects on overall mean temperature. These increased maximum temperatures resulted in subtle, biologically relevant, changes in physiology and behavior of the host and parasitoid. We found that parasitism by the wasp did not significantly alter caterpillar thermoregulatory behavior, while experimentally increased daily maximum temperatures resulted in both parasitized and unparasitized caterpillars to be found more frequently in cooler microhabitats. Overall, we did not observe the complete parasitoid mortality seen at extreme temperatures in laboratory studies, but gained insight into the sublethal effects of increased daily maximum temperatures on host and parasitoid behavior and physiology. Climate change will alter both the biotic and abiotic environments that organisms face, and we show here that empirical experiments in the field are important for understanding organismal response to these new environments. 
    more » « less
  5. The way in which terrestrial organisms use the acoustic realm is fundamentally important and shapes behavior, populations, and communities, but how background acoustics, or noise, influence the patterns and processes in ecology is still relatively understudied. In this review, we summarize how background acoustics have traditionally been studied from the signaling perspective, discuss what is known from a receiver's perspective, and explore what is known about population- and community-level responses to noise. We suggest that there are major gaps linking animal physiology and behavior to fitness; that there is a limited understanding of variation in hearing within and across species, especially in the context of real-world acoustic conditions; and that many puzzling responses to noise could be clarified with a community-level lens that considers indirect effects. Failing to consider variation in acoustic conditions, and the many ways organisms use and interact via this environmental dimension, risks a limited understanding of natural systems. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less