skip to main content

Title: Mapping physiology: biophysical mechanisms define scales of climate change impacts
Abstract The rocky intertidal zone is a highly dynamic and thermally variable ecosystem, where the combined influences of solar radiation, air temperature and topography can lead to differences greater than 15°C over the scale of centimetres during aerial exposure at low tide. For most intertidal organisms this small-scale heterogeneity in microclimates can have enormous influences on survival and physiological performance. However, the potential ecological importance of environmental heterogeneity in determining ecological responses to climate change remains poorly understood. We present a novel framework for generating spatially explicit models of microclimate heterogeneity and patterns of thermal physiology among interacting organisms. We used drone photogrammetry to create a topographic map (digital elevation model) at a resolution of 2 × 2 cm from an intertidal site in Massachusetts, which was then fed into to a model of incident solar radiation based on sky view factor and solar position. These data were in turn used to drive a heat budget model that estimated hourly surface temperatures over the course of a year (2017). Body temperature layers were then converted to thermal performance layers for organisms, using thermal performance curves, creating ‘physiological landscapes’ that display spatially and temporally explicit patterns of ‘microrefugia’. Our framework shows how non-linear interactions more » between these layers lead to predictions about organismal performance and survivorship that are distinct from those made using any individual layer (e.g. topography, temperature) alone. We propose a new metric for quantifying the ‘thermal roughness’ of a site (RqT, the root mean square of spatial deviations in temperature), which can be used to quantify spatial and temporal variability in temperature and performance at the site level. These methods facilitate an exploration of the role of micro-topographic variability in driving organismal vulnerability to environmental change using both spatially explicit and frequency-based approaches. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Conservation Physiology
Sponsoring Org:
National Science Foundation
More Like this
  1. Griffen, Blaine D. (Ed.)
    Ocean acidification (OA) represents a serious challenge to marine ecosystems. Laboratory studies addressing OA indicate broadly negative effects for marine organisms, particularly those relying on calcification processes. Growing evidence also suggests OA combined with other environmental stressors may be even more deleterious. Scaling these laboratory studies to ecological performance in the field, where environmental heterogeneity may mediate responses, is a critical next step toward understanding OA impacts on natural communities. We leveraged an upwelling-driven pH mosaic along the California Current System to deconstruct the relative influences of pH, ocean temperature, and food availability on seasonal growth, condition and shell thickness of the ecologically dominant intertidal mussel Mytilus californianus. In 2011 and 2012, ecological performance of adult mussels from local and commonly sourced populations was measured at 8 rocky intertidal sites between central Oregon and southern California. Sites coincided with a large-scale network of intertidal pH sensors, allowing comparisons among pH and other environmental stressors. Adult California mussel growth and size varied latitudinally among sites and inter-annually, and mean shell thickness index and shell weight growth were reduced with low pH. Surprisingly, shell length growth and the ratio of tissue to shell weight were enhanced, not diminished as expected, by lowmore »pH. In contrast, and as expected, shell weight growth and shell thickness were both diminished by low pH, consistent with the idea that OA exposure can compromise shell-dependent defenses against predators or wave forces. We also found that adult mussel shell weight growth and relative tissue mass were negatively associated with increased pH variability. Including local pH conditions with previously documented influences of ocean temperature, food availability, aerial exposure, and origin site enhanced the explanatory power of models describing observed performance differences. Responses of local mussel populations differed from those of a common source population suggesting mussel performance partially depended on genetic or persistent phenotypic differences. In light of prior research showing deleterious effects of low pH on larval mussels, our results suggest a life history transition leading to greater resilience in at least some performance metrics to ocean acidification by adult California mussels. Our data also demonstrate “hot” (more extreme) and “cold” (less extreme) spots in both mussel responses and environmental conditions, a pattern that may enable mitigation approaches in response to future changes in climate.« less
  2. Abstract

    Understanding the effects of climate-mediated environmental variation on the distribution of organisms is critically important in an era of global change. We used wavelet analysis to quantify the spatiotemporal (co)variation in daily water temperature for predicting the distribution of cryptic refugia across 16 intertidal sites that were characterized as ‘no’, ‘weak’ or ‘strong’ upwelling and spanned 2000 km of the European Atlantic Coast. Sites experiencing weak upwelling exhibited high synchrony in temperature but low levels of co-variability at monthly to weekly timescales, whereas the opposite was true for sites experiencing strong upwelling. This suggests upwelling generates temporal thermal refugia that can promote organismal performance by both supplying colder water that mitigates thermal stress during hot Summer months and ensuring high levels of fine-scale variation in temperature that reduce the duration of thermal extremes. Additionally, pairwise correlograms based on the Pearson-product moment correlation coefficient and wavelet coherence revealed scale dependent trends in temperature fluctuations across space, with a rapid decay in strong upwelling sites at monthly and weekly timescales. This suggests upwelling also generates spatial thermal refugia that can ‘rescue’ populations from unfavorable conditions at local and regional scales. Overall, this study highlights the importance of identifying cryptic spatiotemporal refugia thatmore »emerge from fine-scale environmental variation to map potential patterns of organismal performance in a rapidly changing world.

    « less
  3. Abstract

    Climate change has contributed to recent declines in mountain snowpack and earlier runoff, which in turn have intensified hydrological droughts in western North America. Climate model projections suggest that continued and severe snowpack reductions are expected over the 21st century, with profound consequences for ecosystems and human welfare. Yet the current understanding of trends and variability in mountain snowpack is limited by the relatively short and strongly temperature forced observational record. Motivated by the urgent need to better understand snowpack dynamics in a long-term, spatially coherent framework, here we examine snow-growth relationships in western North American tree-ring chronologies. We present an extensive network of snow-sensitive proxy data to support high space/time resolution paleosnow reconstruction, quantify and interpret the type and spatial density of snow related signals in tree-ring records, and examine the potential for regional bias in the tree-ring based reconstruction of different snow drought types (dry versus warm). Our results indicate three distinct snow-growth relationships in tree-ring chronologies: moisture-limited snow proxies that include a spring temperature signal, moisture-limited snow proxies lacking a spring temperature signal, and energy-limited snow proxies. Each proxy type is based on distinct physiological tree-growth mechanisms related to topographic and climatic site conditions, and providesmore »unique information on mountain snowpack dynamics that can be capitalized upon within a statistical reconstruction framework. This work provides a platform and foundational background required for the accelerated production of high-quality annually resolved snowpack reconstructions from regional to high (<12 km) spatial scales in western North America and, by extension, will support an improved understanding of the vulnerability of snowmelt-derived water resources to natural variability and future climate warming.

    « less
  4. Understanding patterns of aboveground carbon storage across forest types is increasingly important as managers adapt to threats of global change. We combined field measures of aboveground biomass with lidar to model fine-scale biomass in deciduous forests located in two watersheds; one watershed was underlain by sandstone and the other by shale. We measured tree and shrub biomass across three topographic positions for both watersheds and analyzed biomass using mixed models. The watershed underlain by shale had 60% more aboveground biomass than the sandstone watershed. Although spatial patterns of biomass were different across watersheds, both had higher (between about 40% and 55%) biomass values at the toe-slope position than at the ridge-top position. To model fine-scale spatial patterns of biomass, we tested the effectiveness of leaf-on and leaf-off lidar combined with topographic metrics to develop a spatially explicit random forest model of tree and shrub biomass across both watersheds. Leaf-on variables were more important for modeling shrub biomass, while leaf-off variables were more effective at modeling tree biomass. Our model of tree and shrub biomass reflects the distribution of biomass across both watersheds at a fine scale and highlights the potential of abiotic factors such as topography and bedrock to affectmore »carbon storage.« less
  5. Interactions among selection, gene flow, and drift affect the trajectory of adaptive evolution. In natural populations, the direction and magnitude of these processes can be variable across different spatial, temporal, or ontogenetic scales. Consequently, variability in evolutionary processes affects the predictability or stochasticity of microevolutionary outcomes. We studied an intertidal fish, Bathygobius cocosensis (Bleeker, 1854), to understand how space, time, and life stage structure genetic and phenotypic variation in a species with potentially extensive dispersal and a complex life cycle (larval dispersal preceding benthic recruitment). We sampled juvenile and adult life stages, at three sites, over three years. Genome-wide SNPs uncovered a pattern of chaotic genetic patchiness, that is, weak-but-significant patchy spatial genetic structure that was variable through time and between life stages. Outlier locus analyses suggested that targets of spatially divergent selection were mostly temporally variable, though a significant number of spatial outlier loci were shared between life stages. Head shape, a putatively ecologically responsive (adaptive) phenotype in B. cocosensis also exhibited high temporal variability within sites. However, consistent spatial relationships between sites indicated that environmental similarities among sites may generate predictable phenotype distributions across space. Our study highlights the complex microevolutionary dynamics of marine systems, where consideration ofmore »multiple ecological dimensions can reveal both predictable and stochastic patterns in the distributions of genetic and phenotypic variation. Such considerations probably apply to species that possess short, complex life cycles, have large dispersal potential and fecundities, and that inhabit heterogeneous environments.« less