skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rhodium/Gold Dual Catalysis in Carbene sp 2 C−H Functionalization/Conia‐ene Cascade for the Stereoselective Synthesis of Diverse Spirocarbocycles
Abstract A Rh(II)/Au(I) catalyzed carbene cascade approach for the stereoselective synthesis of diverse spirocarbocycles is described. The cascade reaction involves a rhodium carbene initiatedsp2C−H functionalization followed by a gold catalyzed Conia‐ene cyclization. The cascade reaction accommodates a variety of aryl substituents as well as ring sizes and proceeds with high diastereoselectivity providing access to diverse spirocarbocycles. magnified image  more » « less
Award ID(s):
1753187
PAR ID:
10116047
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Synthesis & Catalysis
Volume:
361
Issue:
12
ISSN:
1615-4150
Format(s):
Medium: X Size: p. 2951-2958
Size(s):
p. 2951-2958
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aryl tosylates are an attractive class of electrophiles for cross‐coupling reactions due to ease of synthesis, low price, and the employment of C−O electrophiles, however, the reactivity of aryl tosylates is low. Herein, we report the Ni‐catalyzed C(sp2)−C(sp3) Kumada cross‐coupling of aryl tosylates with primary and secondary alkyl Grignard reagents. The method delivers valuable alkyl arenes by cross‐coupling with challenging alkyl organometallics possessing β‐hydrogens that are prone to β‐hydride elimination and homo‐coupling. The reaction is catalyzed by an air‐ and moisture stable‐Ni(II) precatalyst. A broad range of electronically‐varied aryl tosylates, including bis‐tosylates, underwent this transformation, and many examples are suitable at mild room temperature conditions. The combination of Ar−X cross‐coupling with the facile Ar−OH activation/cross‐coupling strategy permits for orthogonal cross‐coupling with challenging alkyl organometallics. Furthermore, we demonstrate that the method operates with TON reaching 2000, which is one of the highest turnovers observed to date in Ni‐catalyzed cross‐couplings. magnified image 
    more » « less
  2. Abstract The selenenate anion (RSeO) is introduced as an active organocatalyst for the dehydrohalogen coupling of benzyl halides to formtrans‐stilbenes. It is shown that RSeOis a more reactive catalyst than the previously reported sulfur analogues (sulfenate anion, RSO) and selenolate anions (RSe) in the aforementioned reaction. This catalytic system was also applied to the benzylic‐chloromethyl‐coupling polymerization (BCCP) of a bis‐chloromethyl arene to form ppv (poly(p‐phenylene vinylene))‐type polymers with high yields, Mn(average molecular weight) up to 13,000 and Đ (dispersity) of 1.15. magnified image 
    more » « less
  3. Abstract Direct preparation of alkylated amide‐derivatives by cross‐coupling chemistry using sustainable protocols is challenging due to sensitivity of the amide functional group to reaction conditions. Herein, we report the synthesis of alkyl‐substituted amides by iron‐catalyzed C(sp2)−C(sp3) cross‐coupling of Grignard reagents with aryl chlorides. The products of these reactions are broadly used in the synthesis of pharmaceuticals, agrochemicals and other biologically‐active molecules. Furthermore, amides are used as versatile intermediates that can participate in the synthesis of valuable ketones and amines, providing access to motifs of broad synthetic interest. The reaction is characterized by its good substrate scope, tolerating a range of amide substitution, including sterically‐bulky, sensitive and readily modifiable amides. The reaction is compatible with challenging organometallics possessing β‐hydrogens, and proceeds under very mild, operationally‐simple conditions. Optimization of the catalyst system demonstrated the beneficial effect of O‐coordinating ligands on the cross‐coupling. The reaction was found to be fully chemoselective for the mono‐substitution at the less sterically‐hindered position. Mechanistic studies establish the order of reactivity and provide insight into the role of amide to control mono‐selectivity of the alkylation. The protocol provides the possibility for convenient access to alkyl‐amide structural building blocks using sustainable cross‐coupling conditions with high efficiency. magnified image 
    more » « less
  4. Abstract Aiming at the enhanced catalytic activity of fluoro‐λ3‐iodane generated from iodoarene precatalyst with Selectfluor and HF⋅pyridine, this study focused on the λ3‐iodanes bearing coordinating substituents. Compared to 4‐iodoanisole as a precatalyst of our previous method,N‐methyl‐2‐iodobenzamide or 2‐iodobenzamide worked well in the fluorocyclization ofN‐propargyl carboxamides to oxazoles. Control experiments suggest the equilibrium mixture of iodane‐amine complexes and cyclic iodane fluorides would be involved in the present catalysis. magnified image 
    more » « less
  5. Abstract The diastereodivergent synthesis of bridged 1,2,3,4‐tetrahydroisoquinoline derivatives has been achieved by using appropriate modularly designed organocatalysts (MDOs) that are self‐assembled in situ from amino acids and cinchona alkaloid derivatives. The domino Mannich/aza‐Michael/aldol reaction between (E)‐2‐[2‐(3‐aryl‐3‐oxoprop‐1‐en‐1‐yl)phenyl]acetaldehydes and ethyl or benzyl (E)‐2‐[(4‐methoxyphenyl)imino]acetates catalyzed by MDOs gives two different diastereomers of the desired bridged tetrahydroisoquinolines in good yields and excellent diastereoselectivities (up to 99:1 dr) and enantioselectivities (up to >99%ee). The diastereodivergence was achieved in the aldol reaction step. magnified image 
    more » « less