skip to main content


Title: Orientation effects on the nanoscale adsorption behavior of bone morphogenetic protein-2 on hydrophilic silicon dioxide
Bone Morphogenetic Protein-2 (BMP-2) is a growth factor associated with different developmental functions in regenerative medicine and tissue engineering. Because of its favorable properties for the development of bone and cartilage tissue, BMP-2 promotes the biocompatibility of medical implants. In this research, molecular dynamics simulations were implemented to simulate the interaction of BMP-2 with a flat hydrophilic silicon dioxide substrate, an important biomaterial for medical applications. We considered the influence of four orthogonal protein orientations on the adsorption behavior. Results showed that arginine and lysine were the main residues to interact with the silicon dioxide substrate, directly adsorbing onto the surface and overcoming water layers. However, between these charged residues, we observed a preference for arginine to adsorb. Orientations with the α-helix loop closer to the surface at the beginning of the simulations had greater loss of secondary structure as compared to the other configurations. Among all the orientations, the end-on B configuration had favorable adsorption characteristics with a binding energy of 14 000 kJ mol −1 and retention of 21.7% β-sheets as confirmed by the Ramachandran plots. This research provides new insights into the nanoscale interaction of BMP-2 and silicon dioxide substrate with applications in orthopedic implants and regenerative medicine.  more » « less
Award ID(s):
1663128
NSF-PAR ID:
10116096
Author(s) / Creator(s):
;
Date Published:
Journal Name:
RSC Advances
Volume:
9
Issue:
2
ISSN:
2046-2069
Page Range / eLocation ID:
906 to 916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nanoscale surface topographies mediated with biochemical cues influence the differentiation of stem cells into different lineages. This research focuses on the adsorption behavior of bone morphogenetic protein (BMP-2) on nanopatterned gold substrates, which can aid in the differentiation of bone and cartilage tissue constructs. The gold substrates were patterned as flat, pillar, linear grating, and linear-grating deep based, and the BMP-2 conformation in end-on configuration was studied over 20 ns. The linear grating deep substrate pattern had the highest adsorption energy of around 125 kJ/mol and maintained its radius of gyration of 18.5 Å, indicating a stable adsorption behavior. Secondary structures including α-helix and β-sheet displayed no denaturation, and thus, the bioavailability of the BMP-2, for the deep linear-grating pattern. Ramachandran plots for the wrist and knuckle epitopes indicated no steric hindrances and provided binding sites to type I and type II receptors. The deep linear-grating substrate had the highest number of contacts (88 atoms) within 5 Å of the gold substrate, indicating its preferred nanoscale pattern choice among the substrates considered. This research provides new insights into the atomistic adsorption of BMP-2 on nanoscale topographies of a gold substrate, with applications in biomedical implants and regenerative medicine. 
    more » « less
  2. The interaction between bone morphogenetic protein-2 (BMP-2) and the surface of biomaterials is essential for the restoration of bone and cartilage tissue, inducing cellular differentiation and proliferation. The properties of the surface, including topology features, regulate the conformation and bioactivity of the protein. In this research, we investigated the influence of nanopatterned surfaces on the interaction of a homodimer BMP-2 with graphite material by combining molecular dynamics (MD) and steered molecular dynamics (SMD) simulations. The graphite substrates were patterned as flat, linear grating, square, and circular profiles in combination with BMP-2 conformation in the side-on configuration. Ramachandran plots for the wrist and knuckle epitopes indicated no steric hindrances and provided binding sites to type I and type II receptors. Results showed two optimal patterns that increased protein adsorption of the lower monomer while preserving the secondary structure and leaving the upper monomer free to interact with the cells. Charged residues arginine and lysine and polar residues histidine and tyrosine were the main residues responsible for the strong interaction with the graphite surface. This research provides new molecular-level insights to further understand the mechanisms underlying protein adsorption on nanoscale patterned substrates. 
    more » « less
  3. Abstract

    The treatment of bone defects with recombinant bone morphogenetic protein‐2 (BMP‐2) requires high doses precluding broad clinical application. Here, a bioengineering approach is presented that strongly improves low‐dose BMP‐2‐based bone regeneration by mobilizing healing‐associated mesenchymal progenitor cells (MPCs). Smart synthetic hydrogels are used to trap and study endogenous MPCs trafficking to bone defects. Hydrogel‐trapped and prospectively isolated MPCs differentiate into multiple lineages in vitro and form bone in vivo. In vitro screenings reveal that platelet‐derived growth factor BB (PDGF‐BB) strongly recruits prospective MPCs making it a promising candidate for the engineering of hydrogels that enrich endogenous MPCs in vivo. However, PDGF‐BB inhibits BMP‐2‐mediated osteogenesis both in vitro and in vivo. In contrast, smart two‐way dynamic release hydrogels with fast‐release of PDGF‐BB and sustained delivery of BMP‐2 beneficially promote the healing of bone defects. Collectively, it is shown that modulating the dynamics of endogenous progenitor cells in vivo by smart synthetic hydrogels significantly improves bone healing and holds great potential for other advanced applications in regenerative medicine.

     
    more » « less
  4. Galli, Carlo (Ed.)
    In the last decades, cell-based approaches for bone tissue engineering (BTE) have relied on using models that cannot replicate the complexity of the bone microenvironment. There is an ongoing amount of research on scaffold development responding to the need for feasible materials that can mimic the bone extracellular matrix (ECM) and aid bone tissue regeneration (BTR). In this work, a porous cellulose acetate (CA) fiber mat was developed using the electrospinning technique and the mats were chemically modified to bioactivate their surface and promote osteoconduction and osteoinduction. The mats were characterized using FTIR and SEM/EDS to validate the chemical modifications and assess their structural integrity. By coupling adhesive peptides KRSR, RGD, and growth factor BMP-2, the fiber mats were bioactivated, and their induced biological responses were evaluated by employing immunocytochemical (ICC) techniques to study the adhesion, proliferation, and differentiation of premature osteoblast cells (hFOB 1.19). The biological assessment revealed that at short culturing periods of 48 hours and 7 days, the presence of the peptides was significant for proliferation and adhesion, whereas at longer culture times of 14 days, it had no significant effect on differentiation and maturation of the osteogenic progenitor cells. Based on the obtained results, it is thus concluded that the CA porous fiber mats provide a promising surface morphology that is both biocompatible and can be rendered bioactive upon the addition of osteogenic peptides to favor osteoconduction leading to new tissue formation. 
    more » « less
  5. Abstract

    The development of new technologies is key to the continued improvement of medicine, relying on comprehensive materials design strategies that can integrate advanced therapeutic and diagnostic functions with a variety of surface properties such as selective adhesion, dynamic responsiveness, and optical/mechanical tunability. Liquid‐infused surfaces have recently come to the forefront as a unique approach to surface coatings that can resist adhesion of a wide range of contaminants on medical devices. Furthermore, these surfaces are proving highly versatile in enabling the integration of established medical surface treatments alongside the antifouling capabilities, such as drug release or biomolecule organization. Here, the range of research being conducted on liquid‐infused surfaces for medical applications is presented, from an understanding of the basics behind the interactions of physiological fluids, microbes, and mammalian cells with liquid layers to current applications of these materials in point‐of‐care diagnostics, medical tubing, instruments, implants, and tissue engineering. Throughout this exploration, the design parameters of liquid‐infused surfaces and how they can be adapted and tuned to particular applications are discussed, while identifying how the range of controllable factors offered by liquid‐infused surfaces can be used to enable completely new and dynamic approaches to materials and devices for human health.

     
    more » « less