skip to main content


Title: Accounting for Phenology in the Analysis of Animal Movement
Abstract

The analysis of animal tracking data provides important scientific understanding and discovery in ecology. Observations of animal trajectories using telemetry devices provide researchers with information about the way animals interact with their environment and each other. For many species, specific geographical features in the landscape can have a strong effect on behavior. Such features may correspond to a single point (eg, dens or kill sites), or to higher dimensional subspaces (eg, rivers or lakes). Features may be relatively static in time (eg, coastlines or home-range centers), or may be dynamic (eg, sea ice extent or areas of high-quality forage for herbivores). We introduce a novel model for animal movement that incorporates active selection for dynamic features in a landscape. Our approach is motivated by the study of polar bear (Ursus maritimus) movement. During the sea ice melt season, polar bears spend much of their time on sea ice above shallow, biologically productive water where they hunt seals. The changing distribution and characteristics of sea ice throughout the year mean that the location of valuable habitat is constantly shifting. We develop a model for the movement of polar bears that accounts for the effect of this important landscape feature. We introduce a two-stage procedure for approximate Bayesian inference that allows us to analyze over 300 000 observed locations of 186 polar bears from 2012 to 2016. We use our model to estimate a spatial boundary of interest to wildlife managers that separates two subpopulations of polar bears from the Beaufort and Chukchi seas.

 
more » « less
NSF-PAR ID:
10486161
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
75
Issue:
3
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 810-820
Size(s):
["p. 810-820"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Some animal species are responding to climate change by altering the timing of events like mating and migration. Such behavioral plasticity can be adaptive, but it is not always. Polar bears (Ursus maritimus) from the southern Beaufort Sea subpopulation have mostly remained on ice year‐round, but as the climate warms and summer sea ice declines, a growing proportion of the subpopulation is summering ashore. The triggers of this novel behavior are not well understood. Our study uses a parametric time‐to‐event model to test whether biological and/or time‐varying environmental variables thought to influence polar bear movement and habitat selection also drive decisions to swim ashore. We quantified the time polar bears spent occupying offshore sea ice of varying ice concentrations. We evaluated variations in the ordinal date bears moved to land with respect to local environmental conditions such as sea ice concentration and wind across 10 years (2005–2015). Results from our study suggest that storm events (i.e., sustained high wind speeds) may force polar bears from severely degraded ice habitat and catalyze seasonal movements to land. Unlike polar bears long adapted to complete summer ice melt, southern Beaufort Sea bears that summer ashore appear more tolerant of poor‐quality sea ice habitat and are less willing to abandon it. Our findings provide a window into emergent, climatically mediated behavior in an Arctic marine mammal vulnerable to rapid habitat decline.

     
    more » « less
  2. Abstract

    Arctic climate change poses serious threats to polar bears (Ursus maritimus) as reduced sea ice makes seal prey inaccessible and marine ecosystems undergo bottom‐up reorganization. Polar bears’ elongated skulls and reduced molar dentition, as compared to their sister species the grizzly bear (Ursus arctos), are adaptations associated with hunting seals on sea ice and a soft, lipid‐rich diet of blubber and meat. With significant declines in sea ice, it is unclear if and how polar bears may be altering their diets. Clarifying polar bear dietary responses to changing climates, both today and in the past, is critical to proper conservation and management of this apex predator. This is particularly important when a dietary strategy may be maladaptive. Here, we test the hypothesis that hard‐food consumption (i.e., less preferred foods including bone), inferred from dental microwear texture analysis, increased with Arctic warming. We find that polar bears demonstrate a conserved absence of hard‐object feeding in Alaska through time (including approximately 1000 years ago), until the 21st century, consistent with a highly conserved and specialized diet of soft blubber and flesh. Notably, our results also suggest that some 21st‐century polar bears may be consuming harder foods (e.g., increased carcass utilization, terrestrial foods including garbage), despite having skulls and metabolisms poorly suited for such a diet. Prior to the 21st century, only polar bears with larger mandibles demonstrated increased hard‐object feeding, though to a much lower degree than closely related grizzly bears which regularly consume mechanically challenging foods. Polar bears, being morphologically specialized, have biomechanical constraints which may limit their ability to consume mechanically challenging diets, with dietary shifts occurring only under the most extreme scenarios. Collectively, the highly specialized diets and cranial morphology of polar bears may severely limit their ability to adapt to a warming Arctic.

     
    more » « less
  3. Abstract

    Measures of energy expenditure can be used to inform animal conservation and management, but methods for measuring the energy expenditure of free‐ranging animals have a variety of limitations. Advancements in biologging technologies have enabled the use of dynamic body acceleration derived from accelerometers as a proxy for energy expenditure. Although dynamic body acceleration has been shown to strongly correlate with oxygen consumption in captive animals, it has been validated in only a few studies on free‐ranging animals. Here, we use relationships between oxygen consumption and overall dynamic body acceleration in resting and walking polar bearsUrsus maritimusand published values for the costs of swimming in polar bears to estimate the total energy expenditure of 6 free‐ranging polar bears that were primarily using the sea ice of the Beaufort Sea. Energetic models based on accelerometry were compared to models of energy expenditure on the same individuals derived from doubly labeled water methods. Accelerometer‐based estimates of energy expenditure on average predicted total energy expenditure to be 30% less than estimates derived from doubly labeled water. Nevertheless, accelerometer‐based measures of energy expenditure strongly correlated (r2 = 0.70) with measures derived from doubly labeled water. Our findings highlight the strengths and limitations in dynamic body acceleration as a measure of total energy expenditure while also further supporting its use as a proxy for instantaneous, detailed energy expenditure in free‐ranging animals.

     
    more » « less
  4. Abstract

    Declining Arctic sea ice is increasing polar bear land use. Polar bears on land are thought to minimize activity to conserve energy. Here, we measure the daily energy expenditure (DEE), diet, behavior, movement, and body composition changes of 20 different polar bears on land over 19–23 days from August to September (2019–2022) in Manitoba, Canada. Polar bears on land exhibited a 5.2-fold range in DEE and 19-fold range in activity, from hibernation-like DEEs to levels approaching active bears on the sea ice, including three individuals that made energetically demanding swims totaling 54–175 km. Bears consumed berries, vegetation, birds, bones, antlers, seal, and beluga. Beyond compensating for elevated DEE, there was little benefit from terrestrial foraging toward prolonging the predicted time to starvation, as 19 of 20 bears lost mass (0.4–1.7 kg•day−1). Although polar bears on land exhibit remarkable behavioral plasticity, our findings reinforce the risk of starvation, particularly in subadults, with forecasted increases in the onshore period.

     
    more » « less
  5. Abstract

    Understanding animal movement often relies upon telemetry and biologging devices. These data are frequently used to estimate latent behavioural states to help understand why animals move across the landscape. While there are a variety of methods that make behavioural inferences from biotelemetry data, some features of these methods (e.g. analysis of a single data stream, use of parametric distributions) may limit their generality to reliably discriminate among behavioural states.

    To address some of the limitations of existing behavioural state estimation models, we introduce a nonparametric Bayesian framework called the mixed‐membership method for movement (M4), which is available within the open‐sourcebayesmoveR package. This framework can analyse multiple data streams (e.g. step length, turning angle, acceleration) without relying on parametric distributions, which may capture complex behaviours more successfully than current methods. We tested our Bayesian framework using simulated trajectories and compared model performance against two segmentation methods (behavioural change point analysis (BCPA) and segclust2d), one machine learning method [expectation‐maximization binary clustering (EMbC)] and one type of state‐space model [hidden Markov model (HMM)]. We also illustrated this Bayesian framework using movements of juvenile snail kitesRostrhamus sociabilisin Florida, USA.

    The Bayesian framework estimated breakpoints more accurately than the other segmentation methods for tracks of different lengths. Likewise, the Bayesian framework provided more accurate estimates of behaviour than the other state estimation methods when simulations were generated from less frequently considered distributions (e.g. truncated normal, beta, uniform). Three behavioural states were estimated from snail kite movements, which were labelled as ‘encamped’, ‘area‐restricted search’ and ‘transit’. Changes in these behaviours over time were associated with known dispersal events from the nest site, as well as movements to and from possible breeding locations.

    Our nonparametric Bayesian framework estimated behavioural states with comparable or superior accuracy compared to the other methods when step lengths and turning angles of simulations were generated from less frequently considered distributions. Since the most appropriate parametric distributions may not be obvious a priori, methods (such as M4) that are agnostic to the underlying distributions can provide powerful alternatives to address questions in movement ecology.

     
    more » « less