Abstract The response of ectotherms to temperature stress is complex, non-linear, and is influenced by life stage and previous thermal exposure. Mortality is higher under constant low temperatures than under a fluctuating thermal regime (FTR) that maintains the same low temperature but adds a brief, daily pulse of increased temperature. Long term exposure to FTR has been shown to increase transcription of genes involved in oxidative stress, immune function, and metabolic pathways, which may aid in recovery from chill injury and oxidative damage. Previous research suggests the transcriptional response that protects against sub-lethal damage occurs rapidly under exposure to fluctuating temperatures. However, existing studies have only examined gene expression after a week or over many months. Here we characterize gene expression during a single temperature cycle under FTR. Development of pupating alfalfa leafcutting bees (Megachile rotundata) was interrupted at the red-eye stage and were transferred to 6°C with a 1-h pulse to 20°C and returned to 6°C. RNA was collected before, during, and after the temperature pulse and compared to pupae maintained at a static 6°C. The warm pulse is sufficient to cause expression of transcripts that repair cell membrane damage, modify membrane composition, produce antifreeze proteins, restore ion homeostasis, and respond to oxidative stress. This pattern of expression indicates that even brief exposure to warm temperatures has significant protective effects on insects exposed to stressful cold temperatures that persist beyond the warm pulse. Megachile rotundata’s sensitivity to temperature fluctuations indicates that short exposures to temperature changes affect development and physiology. Genes associated with developmental patterning are expressed after the warm pulse, suggesting that 1 h at 20°C was enough to resume development in the pupae. The greatest difference in gene expression occurred between pupae collected after the warm pulse and at constant low temperatures. Although both were collected at the same time and temperature, the transcriptional response to one FTR cycle included multiple transcripts previously identified under long-term FTR exposure associated with recovery from chill injury, indicating that the effects of FTR occur rapidly and are persistent.
more »
« less
Thermoprofile Parameters Affect Survival of Megachile rotundata During Exposure to Low-Temperatures
Abstract Insects exposed to low temperature stress can experience chill injury, but incorporating fluctuating thermoprofiles increases survival and blocks the development of sub-lethal effects. The specific parameters required for a protective thermoprofile are poorly understood, because most studies test a limited range of thermoprofiles. For example, thermoprofiles with a wave profile may perform better than a square profile, but these two profiles are rarely compared. In this study, two developmental stages of the alfalfa leafcutting bee, Megachile rotundata, eye-pigmented pupae, and emergence-ready adults, were exposed to one of eight thermoprofiles for up to 8 weeks. All the thermoprofiles had a base of 6°C and a peak temperature of either 12°C or 18°C. The duration at peak temperature varied depending on the shape of the thermoprofile, either square or wave form. Two other treatments acted as controls, a constant 6°C and a fluctuating thermal regime (FTR) with a base temperature of 6°C that was interrupted daily by a single, 1-h pulse at 20°C. Compared with constant 6°C, all the test thermoprofiles significantly improved survival. Compared with the FTR control, the thermoprofiles with a peak temperature of 18°C outperformed the 12°C profiles. Bees in the eye-pigmented stage exposed to the 18°C profiles separated into two groups based on the shape of the profile, with higher survival in the square profiles compared with the wave profiles. Bees in the emergence-ready stage exposed to 18°C profiles all had significantly higher survival than bees in the FTR controls. Counter to expectations, the least ecologically relevant thermoprofiles (square) had the highest survival rates and blocked the development of sub-lethal effects (delayed emergence).
more »
« less
- PAR ID:
- 10116830
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 59
- Issue:
- 4
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- p. 1089-1102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Variable spring temperatures may expose developing insects to sublethal conditions, resulting in long-term consequences. The alfalfa leafcutting bee, Megachile rotundata, overwinters as a prepupa inside a brood cell, resuming development in spring. During these immobile stages of development, bees must tolerate unfavorable temperatures. In this study, we tested how exposure to low temperature stress during development affects subsequent reproduction and characteristics of the F1 generation. Developing male and female M. rotundata were exposed to either constant (6°C) or fluctuating (1 h day−1 at 20°C) low temperature stress for 1 week, during the pupal stage, to mimic a spring cold snap. Treated adults were marked and released into field cages, and reproductive output was compared with that of untreated control bees. Exposure to low temperatures during the pupal stage had mixed effects on reproduction and offspring characteristics. Females treated with fluctuating low temperatures were more likely to nest compared with control bees or those exposed to constant low temperature stress. Sublethal effects may have contributed to low nesting rates of bees exposed to constant low temperatures. Females from that group that were able to nest had fewer, larger offspring with high viability, suggesting a trade-off. Interestingly, offspring of bees exposed to fluctuating low temperatures were more likely to enter diapause, indicating that thermal history of parents, even during development, is an important factor in diapause determination.more » « less
-
The time-to-event response is commonly thought of as survival analysis, and typically concerns statistical modeling of expected life span. In the example presented here, alfalfa leafcutting bees, Megachile rotundata, were randomly exposed to one of eight experimental thermoprofiles or two control thermoprofiles, for one to eight weeks. The incorporation of these fluctuating thermoprofiles in the management of the bees increases survival and blocks the development of sub-lethal effects, such as delayed emergence. The data collected here investigates the question of whether any experimental thermoprofile provides better overall survival, with a reduction and delay of sub-lethal effects. The study design incorporates typical aspects of agricultural research; random blocking effects. All M. rotundata prepupae brood cells were randomly placed in individual wells of 24-well culture plates. Plates were randomly assigned to thermoprofile and exposure duration, with three plate replicates per thermoprofile x exposure time. Bees were observed for emergence for 40 days. All bees that were not yet emerged prior to fixed end of study were considered to be censored observations. We fit a generalized linear mixed model (GLMM), using the SAS® GLIMMIX Procedure to the censored data and obtained time-to-emergence function estimates. As opposed to a typical survival analysis approach, such as Kaplan-Meier curve, in the GLMM we were able to include the random model effects from the study design. This is an important inclusion in the model, such that correct standard error and test statistics are generated for mixed models with non-Gaussian data.more » « less
-
Exposure to stressful low temperatures during development can result in the accumulation of deleterious physiological effects called chill injury. Metabolic imbalances, disruptions in ion homeostasis, and oxidative stress contribute to the increased mortality of chill-injured insects. Interestingly, survival can be significantly increased when chill susceptible insects are exposed to a daily warm-temperature pulse during chilling. We hypothesize that warm pulses allow for the repair of damage associated with chill-injury. Here, we describe transcriptional responses during exposure to a fluctuating thermal regime (FTR), relative to constant chilled temperatures, during pupal development in the alfalfa leafcutting bee, Megachile rotundata using a combination of RNA-seq and qPCR. Pupae were exposed to either a constant, chilled temperature of 6°C, or 6°C with a daily pulse of 20°C for seven days. RNA-seq after experimental treatment revealed differential expression of transcripts involved in construction of cell membranes, oxidation-reduction and various metabolic processes. These mechanisms provide support for shared physiological responses to chill injury across taxa. The large number of differentially expressed transcripts observed after seven days of treatment suggests that the initial divergence in expression profiles between the two treatments occurred upstream of the time point sampled. Additionally, the differential expression profiles observed in this study show little overlap with those differentially expressed during temperature stress in the diapause state of M. rotundata. While the mechanisms governing the physiological response to low-temperature stress are shared, the specific transcripts associated with the response differ between life stages.more » « less
-
Abstract Megachile rotundata (F.) is an important pollinator of alfalfa in the United States. Enhancing landscapes with wildflowers is a primary strategy for conserving pollinators and may improve the sustainability of M. rotundata. Changing cold storage temperatures from a traditionally static thermal regime (STR) to a fluctuating thermal regime (FTR) improves overwintering success and extends M. rotundata’s shelf life and pollination window. Whether floral resources enhance overwintering survival and/or interact with a thermal regime are unknown. We tested the combined effects of enhancing alfalfa fields with wildflowers and thermal regime on survival and macronutrient stores under extended cold storage (i.e., beyond one season). Megachile rotundata adults were released in alfalfa plots with and without wildflower strips. Completed nests were harvested in September and stored in STR. After a year, cells were randomly assigned to remain in STR for 6 months or in FTR for a year of extended cold storage; emergence rates were observed monthly. Macronutrient levels of emerged females were assessed. FTR improved M. rotundata survival but there was no measurable effect of wildflower strips on overwintering success or nutrient stores. Timing of nest establishment emerged as a key factor: offspring produced late in the season had lower winter survival and dry body mass. Sugars and glycogen stores increased under FTR but not STR. Trehalose levels were similar across treatments. Total lipid stores depleted faster under FTR. While wildflowers did not improve M. rotundata survival, our findings provide mechanistic insight into benefits and potential costs of FTR for this important pollinator.more » « less
An official website of the United States government
