skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Physiological responses to fluctuating temperatures are characterized by distinct transcriptional profiles in a solitary bee
Exposure to stressful low temperatures during development can result in the accumulation of deleterious physiological effects called chill injury. Metabolic imbalances, disruptions in ion homeostasis, and oxidative stress contribute to the increased mortality of chill-injured insects. Interestingly, survival can be significantly increased when chill susceptible insects are exposed to a daily warm-temperature pulse during chilling. We hypothesize that warm pulses allow for the repair of damage associated with chill-injury. Here, we describe transcriptional responses during exposure to a fluctuating thermal regime (FTR), relative to constant chilled temperatures, during pupal development in the alfalfa leafcutting bee, Megachile rotundata using a combination of RNA-seq and qPCR. Pupae were exposed to either a constant, chilled temperature of 6°C, or 6°C with a daily pulse of 20°C for seven days. RNA-seq after experimental treatment revealed differential expression of transcripts involved in construction of cell membranes, oxidation-reduction and various metabolic processes. These mechanisms provide support for shared physiological responses to chill injury across taxa. The large number of differentially expressed transcripts observed after seven days of treatment suggests that the initial divergence in expression profiles between the two treatments occurred upstream of the time point sampled. Additionally, the differential expression profiles observed in this study show little overlap with those differentially expressed during temperature stress in the diapause state of M. rotundata. While the mechanisms governing the physiological response to low-temperature stress are shared, the specific transcripts associated with the response differ between life stages.  more » « less
Award ID(s):
1557940
NSF-PAR ID:
10320290
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
220
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The response of ectotherms to temperature stress is complex, non-linear, and is influenced by life stage and previous thermal exposure. Mortality is higher under constant low temperatures than under a fluctuating thermal regime (FTR) that maintains the same low temperature but adds a brief, daily pulse of increased temperature. Long term exposure to FTR has been shown to increase transcription of genes involved in oxidative stress, immune function, and metabolic pathways, which may aid in recovery from chill injury and oxidative damage. Previous research suggests the transcriptional response that protects against sub-lethal damage occurs rapidly under exposure to fluctuating temperatures. However, existing studies have only examined gene expression after a week or over many months. Here we characterize gene expression during a single temperature cycle under FTR. Development of pupating alfalfa leafcutting bees (Megachile rotundata) was interrupted at the red-eye stage and were transferred to 6°C with a 1-h pulse to 20°C and returned to 6°C. RNA was collected before, during, and after the temperature pulse and compared to pupae maintained at a static 6°C. The warm pulse is sufficient to cause expression of transcripts that repair cell membrane damage, modify membrane composition, produce antifreeze proteins, restore ion homeostasis, and respond to oxidative stress. This pattern of expression indicates that even brief exposure to warm temperatures has significant protective effects on insects exposed to stressful cold temperatures that persist beyond the warm pulse. Megachile rotundata’s sensitivity to temperature fluctuations indicates that short exposures to temperature changes affect development and physiology. Genes associated with developmental patterning are expressed after the warm pulse, suggesting that 1 h at 20°C was enough to resume development in the pupae. The greatest difference in gene expression occurred between pupae collected after the warm pulse and at constant low temperatures. Although both were collected at the same time and temperature, the transcriptional response to one FTR cycle included multiple transcripts previously identified under long-term FTR exposure associated with recovery from chill injury, indicating that the effects of FTR occur rapidly and are persistent. 
    more » « less
  2. Abstract

    Insects exposed to low temperature stress can experience chill injury, but incorporating fluctuating thermoprofiles increases survival and blocks the development of sub-lethal effects. The specific parameters required for a protective thermoprofile are poorly understood, because most studies test a limited range of thermoprofiles. For example, thermoprofiles with a wave profile may perform better than a square profile, but these two profiles are rarely compared. In this study, two developmental stages of the alfalfa leafcutting bee, Megachile rotundata, eye-pigmented pupae, and emergence-ready adults, were exposed to one of eight thermoprofiles for up to 8 weeks. All the thermoprofiles had a base of 6°C and a peak temperature of either 12°C or 18°C. The duration at peak temperature varied depending on the shape of the thermoprofile, either square or wave form. Two other treatments acted as controls, a constant 6°C and a fluctuating thermal regime (FTR) with a base temperature of 6°C that was interrupted daily by a single, 1-h pulse at 20°C. Compared with constant 6°C, all the test thermoprofiles significantly improved survival. Compared with the FTR control, the thermoprofiles with a peak temperature of 18°C outperformed the 12°C profiles. Bees in the eye-pigmented stage exposed to the 18°C profiles separated into two groups based on the shape of the profile, with higher survival in the square profiles compared with the wave profiles. Bees in the emergence-ready stage exposed to 18°C profiles all had significantly higher survival than bees in the FTR controls. Counter to expectations, the least ecologically relevant thermoprofiles (square) had the highest survival rates and blocked the development of sub-lethal effects (delayed emergence).

     
    more » « less
  3. Heat stress compromises wheat (Triticum aestivium) resistance to Hessian fly (HF, Mayetiola destructor (Say)). This study aimed to investigate the impact of heat stress on transcript expression of wheat genes associated with resistance to HF infestation under normal and heat-stressed conditions. To this end, ‘Molly’, a wheat cultivar containing the resistance gene H13, was subjected to HF infestation, heat stress, and the combination of HF infestation and heat stress. Our RNA-Seq approach identified 21 wheat genes regulated by HF infestation under normal temperatures (18 °C) and 155 genes regulated by HF infestation when plants were exposed to 35 °C for 6 h. Three differentially expressed genes (DEGs) from the RNA-Seq analysis were selected to validate the gene function of these DEGs using the RT-qPCR approach, indicating that these DEGs may differentially contribute to the expression of wheat resistance during the early stage of wheat–HF interaction under various stresses. Moreover, the jasmonate ZIM domain (JAZ) gene was also significantly upregulated under these treatments. Our results suggest that the genes in heat-stressed wheat plants are more responsive to HF infestation than those in plants growing under normal temperature conditions, and these genes in HF-infested wheat plants are more responsive to heat stress than those in plants without infestation. 
    more » « less
  4. Abstract

    Bioeroding sponges interact and compete with corals on tropical reefs. Experimental studies have shown global change alters this biotic interaction, often in favour of the sponge. Ocean acidification in particular increases sponge bioerosion and reduces coral calcification, yet little is known about the molecular basis of these changes. We used RNA‐Seq data to understand how acidification impacts the interaction between the bioeroding sponge,Cliona varians, and the coral,Porites furcata, at the transcriptomic level. Replicate sponge and coral genets were exposed to ambient (8.1 pH) and acidified (7.6 pH) conditions in isolation and in treatments where they were joined for 48 h. The coral had a small gene expression response (tens of transcripts) to the sponge, suggesting it does little at the transcriptomic level to deter sponge overgrowth. By contrast, the sponge differentially expressed 7320 transcripts in response to the coral under ambient conditions and 3707 transcripts in response to acidification. Overlap in the responses to acidification and the coral, 2500 transcripts expressed under both treatments, suggests a similar physiological response to both cues. The sponge expressed 50× fewer transcripts in response to the coral under acidification, suggesting energetic costs of bioerosion, and other cellular processes, are lower for sponges under acidification. Our results suggest how acidification drives ecosystem‐level changes in the accretion/bioerosion balance on coral reefs. This shift is not only the result of changes to the thermodynamic balance of these chemical reactions but also the result of active physiological responses of organisms to each other and their abiotic environment.

     
    more » « less
  5. ABSTRACT

    Bumble bees are common in cooler climates and many species likely experience periodic exposure to very cold temperatures, but little is known about the temporal dynamics of cold response mechanisms following chill exposure, especially how persistent effects of cold exposure may facilitate tolerance of future events. To investigate molecular processes involved in the temporal response by bumble bees to acute cold exposure, we compared mRNA transcript abundance in Bombus impatiens workers exposed to 0°C for 75 min (inducing chill coma) and control bees maintained at a constant ambient temperature (28°C). We sequenced the 3′ end of mRNA transcripts (TagSeq) to quantify gene expression in thoracic tissue of bees at several time points (0, 10, 30, 120 and 720 min) following cold exposure. Significant differences from control bees were only detectable within 30 min after the treatment, with most occurring at the 10 min recovery time point. Genes associated with gluconeogenesis and glycolysis were most notably upregulated, while genes related to lipid and purine metabolism were downregulated. The observed patterns of expression indicate a rapid recovery after chill coma, suggesting an acute differential transcriptional response during recovery from chill coma and return to baseline expression levels within an hour, with no long-term gene expression markers of this cold exposure. Our work highlights the functions and pathways important for acute cold recovery, provides an estimated time frame for recovery from cold exposure in bumble bees, and suggests that cold hardening may be less important for these heterothermic insects.

     
    more » « less