skip to main content


Title: Forcing of the Upper-Tropospheric Monsoon Anticyclones

During the boreal warm season (May–September), the circulation in the upper troposphere and lower stratosphere is dominated by two large anticyclones: the Asian monsoon anticyclone (AMA) and North American monsoon anticyclone (NAMA). The existence of the AMA has long been linked to Asian monsoon precipitation using the Matsuno–Gill framework, but the origin of the NAMA has not been clearly understood. Here the forcing mechanisms of the NAMA are investigated using a simplified dry general circulation model. The simulated anticyclones are in good agreement with observations when the model is forced by a zonally symmetric meridional temperature gradient plus a realistic geographical distribution of heating based on observed tropical and subtropical precipitation in the Northern Hemisphere. Model experiments show that the AMA and NAMA are largely independent of one another, and the NAMA is not a downstream response to the Asian monsoon. The primary forcing of the NAMA is precipitation in the longitude sector between 60° and 120°W, with the largest contribution coming from the subtropical latitudes within that sector. Experiments with idealized regional heating distributions reveal that the extratropical response to tropical and subtropical precipitation depends approximately linearly on the magnitude of the forcing but nonlinearly on its latitude. The AMA is stronger than the NAMA, primarily because precipitation in the subtropics over Asia is much heavier than at similar latitudes in the Western Hemisphere.

 
more » « less
NSF-PAR ID:
10117006
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
76
Issue:
7
ISSN:
0022-4928
Page Range / eLocation ID:
p. 1937-1954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Southern hemisphere subtropical anticyclones are projected to change in a warmer climate during both austral summer and winter. A recent study of CMIP 5 & 6 projections found a combination of local diabatic heating changes and static-stability-induced changes in baroclinic eddy growth as the dominant drivers. Yet the underlying mechanisms forcing these changes still remain uninvestigated. This study aims to enhance our mechanistic understanding of what drives these Southern Hemisphere anticyclones changes during both seasons. Using an AGCM, we decompose the response to CO2-induced warming into two components: (1) the fast atmospheric response to direct CO2radiative forcing, and (2) the slow atmospheric response due to indirect sea surface temperature warming. Additionally, we isolate the influence of tropical diabatic heating with AGCM added heating experiments. As a complement to our numerical AGCM experiments, we analyze the Atmospheric and Cloud Feedback Model Intercomparison Project experiments. Results from sensitivity experiments show that slow subtropical sea surface temperature warming primarily forces the projected changes in subtropical anticyclones through baroclinicity change. Fast CO2atmospheric radiative forcing on the other hand plays a secondary role, with the most notable exception being the South Atlantic subtropical anticyclone in austral winter, where it opposes the forcing by sea surface temperature changes resulting in a muted net response. Lastly, we find that tropical diabatic heating changes only significantly influence Southern Hemisphere subtropical anticyclone changes through tropospheric wind shear changes during austral winter.

     
    more » « less
  2. Abstract

    Insolation changes play an important role in driving monsoon changes at orbital time scales. One key issue that has remained outstanding is whether the Asian monsoon is driven by local insolation from the Northern Hemisphere (NH) or remote insolation from the Southern Hemisphere (SH) at orbital band. Here, we perform a set of sensitivity experiments to quantify the impacts of local and remote insolation changes on the Afro‐Asian summer monsoon at 11 ka BP relative to the present. We show that the Afro‐Asian summer monsoon is overwhelmingly driven by the precession induced local insolation change in the tropical‐subtropical NH. The insolation from NH high latitudes also affects the Afro‐Asian summer monsoon. In contrast, the insolation from SH plays a negligible role. Our model experiments support the idea that the Afro‐Asian summer monsoon are driven predominantly by the direct forcing of NH low latitudes summer insolation for the Holocene.

     
    more » « less
  3. null (Ed.)
    Abstract Using observational data and model hindcasts produced by a coupled climate model, we examine the response of the East Asian winter monsoon (EAWM) to three types of El Niño: eastern Pacific (EP) and central Pacific I (CP-I) and II (CP-II) El Niños. The observational analysis shows that all three El Niño types weaken the EAWM with varying degrees of impact. The EP El Niño has the largest weakening effect, while the CP-II El Niño has the second largest, and the CP-I El Niño has the smallest. We find that diverse El Niño types impact the EAWM by altering the responses of two anomalous anticyclones during El Niño mature winter: the western North Pacific anticyclone (WNPAC) and Kuroshio anticyclone (KAC). The WNPAC responses are controlled by the Gill response and Indian Ocean warming processes that both respond to the eastern-to-central tropical Pacific precipitation anomalies. The KAC responses are controlled by a poleward wave propagation responding to the northwestern tropical Pacific precipitation anomalies. We find that the model hindcasts significantly underestimate the weakening effect during the EP and CP-II El Niños. These underestimations are related to a model deficiency in which it produces a too-weak WNPAC response during the EP El Niño and completely misses the KAC response during both types of El Niño. The too-weak WNPAC response is caused by the model deficiency of simulating too-weak eastern-to-central tropical Pacific precipitation anomalies. The lack of KAC response arises from the unrealistic response of the model’s extratropical atmosphere to the northwestern tropical Pacific precipitation anomalies. 
    more » « less
  4. Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes. 
    more » « less
  5. Abstract

    A moist General Circulation Model is used to investigate the forcing of the Asian monsoon and the associated upper level anticyclone by land‐sea contrast, net horizontal oceanic heat transport, and topography. The monsoonal pattern is not simply the linear additive sum of the response to each forcing; only when all three forcings are included simultaneously does the monsoonal circulation extend westward to India. This nonadditivity impacts the location of the upper level anticyclone, which is shifted eastward and weaker if the forcings are imposed individually. Sahelian precipitation, and also austral summer precipitation over Australia, southern Africa, and South America, are likewise stronger if all forcings are imposed simultaneously. The source of the nonlinearity can be diagnosed using gross moist stability, but appears inconsistent with the land‐sea breeze paradigm. This non‐additivity implies that the question of which forcing is most important may be ill‐posed in many regions.

     
    more » « less