This paper is devoted to a proof of the linear stability of the unit charge static Skyrmion F0. The Skyrme model, a natural generalisation of non-linear sigma models, is a non-linear classical field theory admitting topological solitons. It is considered in the study of nuclei and in condensed matter physics, as well as for purely mathematical reasons.
more »
« less
Real-space observation of skyrmion clusters with mutually orthogonal skyrmion tubes
- Award ID(s):
- 1810513
- PAR ID:
- 10117062
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 100
- Issue:
- 10
- ISSN:
- 2469-9950; PRBMDO
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To enable the practical use of skyrmion-based devices, it is essential to achieve a balance between energy efficiency and thermal stability while also ensuring reliable electrical detection against noise. Understanding how a skyrmion interacts with material disorder and external perturbations is thus essential. Here, we investigate the electronic noise of a single skyrmion under the influence of thermal fluctuations and spin currents in a magnetic thin film. We detect the thermally induced noise with a 1/ f γ signature in the strong pinning regime but a random telegraph noise in the intermediate pinning regime. Both the thermally dominated and current induced telegraph like signals are detected in the weak pinning regime. Our results provide a comprehensive electronic noise picture of a single skyrmion, demonstrating the potential of noise fluctuation as a valuable tool for characterizing the pinning condition of a skyrmion. These insights could also aid in the development of low-noise and reliable skyrmion-based devices.more » « less
-
Abstract Magnetic skyrmions exhibit unique, technologically relevant pseudo‐particle behaviors which arise from their topological protection, including well‐defined, 3D dynamic modes that occur at microwave frequencies. During dynamic excitation, spin waves are ejected into the interstitial regions between skyrmions, creating the magnetic equivalent of a turbulent sea. However, since the spin waves in these systems have a well‐defined length scale, and the skyrmions are on an ordered lattice, ordered structures from spin‐wave interference can precipitate from the chaos. This work uses small‐angle neutron scattering (SANS) to capture the dynamics in hybrid skyrmions and investigate the spin‐wave structure. Performing simultaneous ferromagnetic resonance and SANS, the diffraction pattern shows a large increase in low‐angle scattering intensity, which is present only in the resonance condition. This scattering pattern is best fit using a mass fractal model, which suggests the spin waves form a long‐range fractal network. The fractal structure is constructed of fundamental units with a size that encodes the spin‐wave emissions and are constrained by the skyrmion lattice. These results offer critical insights into the nanoscale dynamics of skyrmions, identify a new dynamic spin‐wave fractal structure, and demonstrate SANS as a unique tool to probe high‐speed dynamics.more » « less
An official website of the United States government
