Abstract Retreat or advance of an ice sheet perturbs the Earth's solid surface, rotational vector, and the gravitational field, which in turn feeds back onto the evolution of the ice sheet over a range of timescales. Throughout the last glacial cycle, ice sheets over the Northern Hemisphere have gone through multiple growth and retreat phases, but the dynamics during these phases are not well understood. In this study, we apply a coupled ice sheet‐glacial isostatic adjustment model to simulate the Northern Hemisphere Ice Sheets over the last glacial cycle. We focus on understanding the influence of solid Earth deformation and gravitational field perturbations associated with surface (ice and water) loading changes on the dynamics of terrestrial and marine‐based ice sheets during different phases of the glacial cycle. Our results show that solid Earth deformation enhances glaciation during growth phases and melting during retreat phases in terrestrial regions through ice‐elevation feedback, and gravitational field perturbations have a stabilizing influence on marine‐based ice sheets in regions such as Hudson Bay in North America and Barents and Kara Seas in Eurasia during retreat phases through sea‐level feedback. Our results also indicate that solid Earth deformation influences the relative sensitivity of the North American and Eurasian ice sheets to climate and thus the timing and magnitude of their fluctuations throughout the last glacial cycle.
more »
« less
100 Years of Earth System Model Development
Abstract Today’s global Earth system models began as simple regional models of tropospheric weather systems. Over the past century, the physical realism of the models has steadily increased, while the scope of the models has broadened to include the global troposphere and stratosphere, the ocean, the vegetated land surface, and terrestrial ice sheets. This chapter gives an approximately chronological account of the many and profound conceptual and technological advances that made today’s models possible. For brevity, we omit any discussion of the roles of chemistry and biogeochemistry, and terrestrial ice sheets.
more »
« less
- Award ID(s):
- 1643431
- PAR ID:
- 10117180
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Meteorological Monographs
- Volume:
- 59
- ISSN:
- 0065-9401
- Page Range / eLocation ID:
- p. 12.1-12.66
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract There is no consensus on how quickly the earth's ice sheets are melting due to global warming, nor on the ramifications to sea level rise. Due to its potential effects on coastal populations and global economies, sea level rise is a grave concern, making ice melt rates an important area of study. The ice‐sheet science community consists of two groups that perform related but distinct kinds of research: a data community, and a model building community. The data community characterizes past and current states of the ice sheets by assembling data from field and satellite observations. The modeling community forecasts the rate of ice‐sheet decline with computational models validated against observations. Although observational data and models depend on one another, these two groups are not well integrated. Better coordination between data collection efforts and modeling efforts is imperative if we are to improve our understanding of ice sheet loss rates. We present a new science gateway,GHub, a collaboration space for ice sheet scientists. This web‐accessible gateway will host datasets and modeling workflows, and provide access to codes that enable tool building by the ice sheet science community. Using GHub, we will collect and centralize existing datasets, creating data products that more completely catalog the ice sheets of Greenland and Antarctica. We will build workflows for model validation and uncertainty quantification, extending existing ice sheet models. Finally, we will host existing community codes, enabling scientists to build new tools utilizing them. With this new cyberinfrastructure, ice sheet scientists will gain integrated tools to quantify the rate and extent of sea level rise, benefitting human societies around the globe.more » « less
-
Abstract Sea-level rise submerges terrestrial permafrost in the Arctic, turning it into subsea permafrost. Subsea permafrost underlies ~ 1.8 million km2of Arctic continental shelf, with thicknesses in places exceeding 700 m. Sea-level variations over glacial-interglacial cycles control subsea permafrost distribution and thickness, yet no permafrost model has accounted for glacial isostatic adjustment (GIA), which deviates local sea level from the global mean due to changes in ice and ocean loading. Here we incorporate GIA into a pan-Arctic model of subsea permafrost over the last 400,000 years. Including GIA significantly reduces present-day subsea permafrost thickness, chiefly because of hydro-isostatic effects as well as deformation related to Northern Hemisphere ice sheets. Additionally, we extend the simulation 1000 years into the future for emissions scenarios outlined in the Intergovernmental Panel on Climate Change’s sixth assessment report. We find that subsea permafrost is preserved under a low emissions scenario but mostly disappears under a high emissions scenario.more » « less
-
Marine δ18O data reveal astronomical forcing of the climate and cryosphere during the Miocene, when atmosphericPco2was on par with emissions scenarios over the next century. This inspired hypotheses for how Milankovitch cycles, ice-ocean interactions, and greenhouse gases influence ice volume. Mass balance controls for marine and terrestrial ice sheets differ, and proxy data collected far from Antarctica provide valuable but limited insight into regional processes. We evaluate clast abundance data from Antarctic marine sedimentary records, observing a strong signal of eccentricity and precession coincident with a terrestrial ice sheet and a clear obliquity signal at the margins of a marine ice sheet. These analyses are integrated with a synthesis of proxy data, and we argue that high variance in obliquity forcing (mediated and enhanced by the ocean and atmosphere) can inhibit ice sheet growth, even when insolation forcing is conducive to glaciation. This “obliquity disruption” explains cryosphere variability before the existence of large northern hemisphere ice sheets.more » « less
-
Abstract Drill cores from the Antarctic continental shelf are essential for directly constraining changes in past Antarctic Ice Sheet extent. Here, we provide a sedimentary facies analysis of drill cores from International Ocean Discovery Program (IODP) Site U1521 in the Ross Sea, which reveals a unique, detailed snapshot of Antarctic Ice Sheet evolution between ca. 18 Ma and 13 Ma. We identify distinct depositional packages, each of which contains facies successions that are reflective of past baseline shifts in the presence or absence of marine-terminating ice sheets on the outermost Ross Sea continental shelf. The oldest depositional package (>18 Ma) contains massive diamictites stacked through aggradation and deposited in a deep, actively subsiding basin that restricted marine ice sheet expansion on the outer continental shelf. A slowdown in tectonic subsidence after 17.8 Ma led to the deposition of progradational massive diamictites with thin mudstone beds/laminae, as several large marine-based ice sheet advances expanded onto the mid- to outer continental shelf between 17.8 Ma and 17.4 Ma. Between 17.2 Ma and 15.95 Ma, packages of interbedded diamictite and diatom-rich mudstone were deposited during a phase of highly variable Antarctic Ice Sheet extent and volume. This included periods of Antarctic Ice Sheet advance near the outer shelf during the early Miocene Climate Optimum (MCO)—despite this being a well-known period of peak global warmth between ca. 17.0 Ma and 14.6 Ma. Conversely, there were periods of peak warmth within the MCO during which diatom-rich mudstones with little to no ice-rafted debris were deposited, which indicates that the Antarctic Ice Sheet was greatly reduced in extent and had retreated to a smaller terrestrial-terminating ice sheet, most notably between 16.3 Ma and 15.95 Ma. Post-14.2 Ma, diamictites and diatomites contain unambiguous evidence of subglacial shearing in the core and provide the first direct, well-dated evidence of highly erosive marine ice sheets on the outermost continental shelf during the onset of the Middle Miocene Climate Transition (MMCT; 14.2–13.6 Ma). Although global climate forcings and feedbacks influenced Antarctic Ice Sheet advances and retreats during the MCO and MMCT, we propose that this response was nonlinear and heavily influenced by regional feedbacks related to the shoaling of the continental shelf due to reduced subsidence, sediment infilling, and local sea-level changes that directly influenced oceanic influences on melting at the Antarctic Ice Sheet margin. Although intervals of diatom-rich muds and diatomite indicating open-marine interglacial conditions still occurred during (and following) the MMCT, repeated advances of marine-based ice sheets since that time have resulted in widespread erosion and overdeepening in the inner Ross Sea, which has greatly enhanced sensitivity to marine ice sheet instability since 14.2 Ma.more » « less
An official website of the United States government
