Retreat or advance of an ice sheet perturbs the Earth's solid surface, rotational vector, and the gravitational field, which in turn feeds back onto the evolution of the ice sheet over a range of timescales. Throughout the last glacial cycle, ice sheets over the Northern Hemisphere have gone through multiple growth and retreat phases, but the dynamics during these phases are not well understood. In this study, we apply a coupled ice sheet‐glacial isostatic adjustment model to simulate the Northern Hemisphere Ice Sheets over the last glacial cycle. We focus on understanding the influence of solid Earth deformation and gravitational field perturbations associated with surface (ice and water) loading changes on the dynamics of terrestrial and marine‐based ice sheets during different phases of the glacial cycle. Our results show that solid Earth deformation enhances glaciation during growth phases and melting during retreat phases in terrestrial regions through ice‐elevation feedback, and gravitational field perturbations have a stabilizing influence on marine‐based ice sheets in regions such as Hudson Bay in North America and Barents and Kara Seas in Eurasia during retreat phases through sea‐level feedback. Our results also indicate that solid Earth deformation influences the relative sensitivity of the North American and Eurasian ice sheets to climate and thus the timing and magnitude of their fluctuations throughout the last glacial cycle.
more » « less- NSF-PAR ID:
- 10450175
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 126
- Issue:
- 4
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The rate and consequences of future high latitude ice sheet retreat remain a major concern given ongoing anthropogenic warming. Here, new precisely dated stalagmite data from NW Iberia provide the first direct, high-resolution records of periods of rapid melting of Northern Hemisphere ice sheets during the penultimate deglaciation. These records reveal the penultimate deglaciation initiated with rapid century-scale meltwater pulses which subsequently trigger abrupt coolings of air temperature in NW Iberia consistent with freshwater-induced AMOC slowdowns. The first of these AMOC slowdowns, 600-year duration, was shorter than Heinrich 1 of the last deglaciation. Although similar insolation forcing initiated the last two deglaciations, the more rapid and sustained rate of freshening in the eastern North Atlantic penultimate deglaciation likely reflects a larger volume of ice stored in the marine-based Eurasian Ice sheet during the penultimate glacial in contrast to the land-based ice sheet on North America as during the last glacial.more » « less
-
Abstract Climatic warming following the Last Glacial Maximum caused the southern Laurentide Ice Sheet (LIS) to begin ∼2,000‐year cycles of retreat and readvance whose cause remains ambiguous. By developing a marine‐calibrated chronology of southern LIS position, we counterintuitively demonstrate that between 17.6 and 11.3 ka, ice advanced during times of northern‐hemisphere warming and retreated during times of northern‐hemisphere cooling. Here we propose a cyclical feedback: Meltwater from ice retreat cooled the northern hemisphere by weakening the Atlantic Meridional Overturning Circulation (AMOC). This eventually lead to ice‐sheet readvance, which reduced and rerouted meltwater discharge, and thereby allowed the AMOC to strengthen and the northern hemisphere to warm. Our data suggest that this antiphased ice–climate interaction, paced by ice‐sheet response time, was initiated by synchronous warming and ice retreat ∼18.7–17.6 ka (corresponding to the Erie “Interstade”) and reached its apex during the Younger Dryas.
-
Abstract The Mid‐Pleistocene Transition (MPT, 1,200–600 ka) marks the rapid expansion of Northern Hemisphere (NH) continental ice sheets and stronger precession pacing of glacial/interglacial cyclicity. Here, we investigate the relationship between thermocline depth in the central North Atlantic, subsurface northward heat transport and the initiation of the 100‐kyr cyclicity during the MPT. To reconstruct deep‐thermocline temperatures, we generated a Mg/Ca‐based temperature record of deep‐dwelling (∼800 m) planktonic foraminifera from mid‐latitude North Atlantic at Site U1313. This record shows phases of pronounced heat accumulation at subsurface levels during the mid‐MPT glacial driven by increased outflow of the Mediterranean Sea. Concurrent warming of the subtropical thermocline and subpolar surface waters indicates enhanced (subsurface) inter‐gyre transport of warm water to the subpolar North Atlantic, which provided moisture for ice‐sheet growth. Precession‐modulated variability in the northward transport of subtropical waters imprinted this orbital cyclicity into NH ice‐sheets after Marine Isotope Stage 24.
-
null (Ed.)Abstract. It is widely accepted that orbital variations areresponsible for the generation of glacial cycles during the latePleistocene. However, the relative contributions of the orbital forcingcompared to CO2 variations and other feedback mechanisms causing thewaxing and waning of ice sheets have not been fully understood. Testingtheories of ice ages beyond statistical inferences, requires numericalmodeling experiments that capture key features of glacial transitions. Here,we focus on the glacial buildup from Marine Isotope Stage (MIS) 7 to 6covering the period from 240 to 170 ka (ka: thousand years before present). Thistransition from interglacial to glacial conditions includes one of thefastest Pleistocene glaciation–deglaciation events, which occurred during MIS 7e–7d–7c (236–218 ka). Using a newly developed three-dimensional coupledatmosphere–ocean–vegetation–ice sheet model (LOVECLIP), we simulate thetransient evolution of Northern Hemisphere and Southern Hemisphere ice sheets duringthe MIS 7–6 period in response to orbital and greenhouse gas forcing. For arange of model parameters, the simulations capture the evolution of globalice volume well within the range of reconstructions. Over the MIS 7–6period, it is demonstrated that glacial inceptions are more sensitive toorbital variations, whereas terminations from deep glacial conditions needboth orbital and greenhouse gas forcings to work in unison. For someparameter values, the coupled model also exhibits a critical North Americanice sheet configuration, beyond which a stationary-wave–ice-sheettopography feedback can trigger an unabated and unrealistic ice sheetgrowth. The strong parameter sensitivity found in this study originates fromthe fact that delicate mass imbalances, as well as errors, are integratedduring a transient simulation for thousands of years. This poses a generalchallenge for transient coupled climate–ice sheet modeling, with suchcoupled paleo-simulations providing opportunities to constrain suchparameters.more » « less
-
Abstract Atmospheric rivers (ARs) are an important driver of surface mass balance over today's Greenland and Antarctic ice sheets. Using paleoclimate simulations with the Community Earth System Model, we find ARs also had a key influence on the extensive ice sheets of the Last Glacial Maximum (LGM). ARs provide up to 53% of total precipitation along the margins of the eastern Laurentide ice sheet and up to 22%–27% of precipitation along the margins of the Patagonian, western Cordilleran, and western Fennoscandian ice sheets. Despite overall cold conditions at the LGM, surface temperatures during AR events are often above freezing, resulting in more rain than snow along ice sheet margins and conditions that promote surface melt. The results suggest ARs may have had an important role in ice sheet growth and melt during previous glacial periods and may have accelerated ice sheet retreat following the LGM.