skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum-state-specific reaction rate measurements for the photo-induced reaction Ca + + O 2 → CaO + + O
Award ID(s):
1664325 1734006
PAR ID:
10118537
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Molecular Physics
ISSN:
0026-8976
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The gas-phase reaction of O + H 3 + has two exothermic product channels: OH + + H 2 and H 2 O + + H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coefficients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% versus 30% for the formation of OH + + H 2 versus H 2 O + + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% versus 42% at 10 K. We provide recommended rate coefficients for the two product channels for two cases, one where the initial fine-structure population of the O( 3 P J ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium. 
    more » « less
  2. Abstract Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O[Bi≡B−B≡O]in which both boron atoms can be viewed as sp‐hybridized and the [B−BO]fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2Oand ReB2Oand investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2Ohas a closed‐shell bent structure (Cs,1A′) with BOcoordinated to an Ir≡B unit, (OB)Ir≡B, whereas ReB2Ois linear (C∞v,3Σ) with an electron‐precise Re≡B triple bond, [Re≡B−B≡O]. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems. 
    more » « less