skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Branching Ratio for O + H 3 + Forming OH + + H 2 and H 2 O + + H
Abstract The gas-phase reaction of O + H 3 + has two exothermic product channels: OH + + H 2 and H 2 O + + H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coefficients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% versus 30% for the formation of OH + + H 2 versus H 2 O + + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% versus 42% at 10 K. We provide recommended rate coefficients for the two product channels for two cases, one where the initial fine-structure population of the O( 3 P J ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium.  more » « less
Award ID(s):
2002461
PAR ID:
10331891
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The water reactivity of the boroauride complex ([Au(B 2 P 2 )][K(18-c-6)]; (B 2 P 2 , 9,10-bis(2-(diisopropylphosphino)-phenyl)-9,10-dihydroboranthrene) and its corresponding two-electron oxidized complex, Au(B 2 P 2 )Cl, are presented. Au(B 2 P 2 )Cl is tolerant to H 2 O and forms the hydroxide complex Au(B 2 P 2 )OH in the presence of H 2 O and triethylamine. [Au(B 2 P 2 )]Cl and [Au(B 2 P 2 )]OH are poor Lewis acids as judged by the Gutmann–Becket method, with [Au(B 2 P 2 )]OH displaying facile hydroxide exchange between B atoms of the DBA ring as evidenced by variable temperature NMR spectroscopy. The reduced boroauride complex [Au(B 2 P 2 )] − reacts with 1 equivalent of H 2 O to produce a hydride/hydroxide product, [Au(B 2 P 2 )(H)(OH)] − , that rapidly evolves H 2 upon further H 2 O reaction to yield the dihydroxide compound, [Au(B 2 P 2 )(OH) 2 ] − . [Au(B 2 P 2 )]Cl can be regenerated from [Au(B 2 P 2 )(OH) 2 ] − via HCl·Et 2 O, providing a synthetic cycle for H 2 evolution from H 2 O enabled by O–H oxidative addition at a diboraanthracene unit. 
    more » « less
  2. Abstract Pulsed dielectric barrier discharges (DBD) in He–H 2 O and He–H 2 O–O 2 mixtures are studied in near atmospheric conditions using temporally and spatially resolved quantitative 2D imaging of the hydroxyl radical (OH) and hydrogen peroxide (H 2 O 2 ). The primary goal was to detect and quantify the production of these strongly oxidative species in water-laden helium discharges in a DBD jet configuration, which is of interest for biomedical applications such as disinfection of surfaces and treatment of biological samples. Hydroxyl profiles are obtained by laser-induced fluorescence (LIF) measurements using 282 nm laser excitation. Hydrogen peroxide profiles are measured by photo-fragmentation LIF (PF-LIF), which involves photo-dissociating H 2 O 2 into OH with a 212.8 nm laser sheet and detecting the OH fragments by LIF. The H 2 O 2 profiles are calibrated by measuring PF-LIF profiles in a reference mixture of He seeded with a known amount of H 2 O 2 . OH profiles are calibrated by measuring OH-radical decay times and comparing these with predictions from a chemical kinetics model. Two different burst discharge modes with five and ten pulses per burst are studied, both with a burst repetition rate of 50 Hz. In both cases, dynamics of OH and H 2 O 2 distributions in the afterglow of the discharge are investigated. Gas temperatures determined from the OH-LIF spectra indicate that gas heating due to the plasma is insignificant. The addition of 5% O 2 in the He admixture decreases the OH densities and increases the H 2 O 2 densities. The increased coupled energy in the ten-pulse discharge increases OH and H 2 O 2 mole fractions, except for the H 2 O 2 in the He–H 2 O–O 2 mixture which is relatively insensitive to the additional pulses. 
    more » « less
  3. The hydroxylation of C–H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2complex2asupported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex3acan be independently generated either by H-atom transfer (HAT) in the reaction of2awith phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2complex1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm−1associated with the symmetric Co–O–Co stretching mode of the Co2O2diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for1aand2aby Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their “diamond core” structural assignments. The independent generation of3aallows us to investigate HAT reactions of2awith phenols in detail, measure the redox potential and pKaof the system, and calculate the O–H bond strength (DO–H) of3ato shed light on the C–H bond activation reactivity of2a. Complex3ais found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal2ato be 106-fold more reactive in oxidizing hydrocarbon C–H bonds than corresponding FeIII,IV2(µ-O)2and MnIII,IV2(µ-O)2analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2species to oxidize alkane C–H bonds. 
    more » « less
  4. Aims.The goal is to develop a database of rate coefficients for rotational state-to-state transitions in H2O + H2O collisions that is suitable for the modeling of energy transfer in nonequilibrium conditions, in which the distribution of rotational states of H2O deviates from local thermodynamic equilibrium. Methods.A two-temperature model was employed that assumed that although there is no equilibrium between all possible degrees of freedom in the system, the translational and rotational degrees of freedom can be expected to achieve their own equilibria independently, and that they can be approximately characterized by Boltzmann distributions at two different temperatures,TkinandTrot. Results.Upon introducing our new parameterization of the collisional rates, taking into account their dependence on bothTkinandTrot, we find a change of up to 20% in the H2O rotational level populations for both ortho and para-H2O for the part of the cometary coma where the nonequilibrium regime occurs. 
    more » « less
  5. Abstract Plasmas interacting with liquid microdroplets are gaining momentum due to their ability to significantly enhance the reactivity transfer from the gas phase plasma to the liquid. This is, for example, critically important for efficiently decomposing organic pollutants in water. In this contribution, the role of ⋅ OH as well as non- ⋅ OH-driven chemistry initiated by the activation of small water microdroplets in a controlled environment by diffuse RF glow discharge in He with different gas admixtures (Ar, O 2 and humidified He) at atmospheric pressure is quantified. The effect of short-lived radicals such as O ⋅ and H ⋅ atoms, singlet delta oxygen (O 2 ( a 1 Δ g )), O 3 and metastable atoms of He and Ar, besides ⋅ OH radicals, on the decomposition of formate dissolved in droplets was analyzed using detailed plasma diagnostics, droplet characterization and ex situ chemical analysis of the treated droplets. The formate decomposition increased with increasing droplet residence time in the plasma, with ∼70% decomposition occurring within ∼15 ms of the plasma treatment time. The formate oxidation in the droplets is shown to be limited by the gas phase ⋅ OH flux at lower H 2 O concentrations with a significant enhancement in the formate decomposition at the lowest water concentration, attributed to e − /ion-induced reactions. However, the oxidation is diffusion limited in the liquid phase at higher gaseous ⋅ OH concentrations. The formate decomposition in He/O 2 plasma was similar, although with an order of magnitude higher O ⋅ radical density than the ⋅ OH density in the corresponding He/H 2 O plasma. Using a one-dimensional reaction–diffusion model, we showed that O 2 ( a 1 Δ g ) and O 3 did not play a significant role and the decomposition was due to O ⋅ , and possibly ⋅ OH generated in the vapor containing droplet-plasma boundary layer. 
    more » « less