skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct Glycosidation of 2-Azido-2-deoxyglycosyl Nitrates: Direct Glycosidation of 2-Azido-2-deoxyglycosyl Nitrates
Award ID(s):
1800350
PAR ID:
10118912
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
European Journal of Organic Chemistry
Volume:
2019
Issue:
37
ISSN:
1434-193X; EJOC
Page Range / eLocation ID:
p. 6413-6416
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To enhance the versatility of organic azides in organic synthesis, a better understanding of their photochemistry is required. Herein, the photoreactivity of azidoisoxazole 1 was characterized in cryogenic matrices with IR and UV-Vis absorption spectroscopy. The irradiation (λ = 254 nm) of azidoisoxazole 1 in an argon matrix at 13 K and in glassy 2-methyltetrahydrofuran (mTHF) at 77 K yielded nitrosoalkene 3. Density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations were used to aid the characterization of nitrosoalkene 3 and to support the proposed mechanism for its formation. It is likely that nitrosoalkene 3 is formed from the singlet excited state of azidoisoxazole 1 via a concerted mechanism or from cleavage of an intermediate singlet nitrene that does not undergo efficient intersystem crossing to its triplet configuration. 
    more » « less
  2. Reported herein is a new reaction for glycosylation with thioglycosides in the presence of iron(III) chloride. Previously, FeCl3 was used for the activation of thioglycosides as a Lewis acid co-promoter paired with NIS. In the reported process, although 5.0 equiv of FeCl3 are needed to activate thioglycosides most efficiently, no additives were used, and the reactions with reactive glycosyl donors smoothly proceeded to completion in 1 h at 0 °C. This work showcases a new direction in developing glycosylation methods using greener and earth-abundant activators. 
    more » « less