Localization is one form of cooperative spectrum sensing that lets multiple sensors work together to estimate the location of a target transmitter. However, the requisite exchange of spectrum measurements leads to exposure of the physical loca- tion of participating sensors. Furthermore, in some cases, a com- promised participant can reveal the sensitive characteristics of all participants. Accordingly, a lack of sufficient guarantees about data handling discourages such devices from working together. In this paper, we provide the missing data protections by processing spectrum measurements within attestable containers or enclaves. Enclaves provide runtime memory integrity and confidentiality using hardware extensions and have been used to secure various applications [1]–[8]. We use these enclave features as building blocks for new privacy-preserving particle filter protocols that minimize disruption of the spectrum sensing ecosystem. We then instantiate this enclave using ARM TrustZone and Intel SGX, and we show that enclave-based particle filter protocols incur minimal overhead (adding 16 milliseconds of processing to the measurement processing function when using SGX versus unprotected computation) and can be deployed on resource-constrained platforms that support TrustZone (incurring only a 1.01x increase in processing time when doubling particle count from 10,000 to 20,000), whereas cryptographically-based approaches suffer from multiple orders of magnitude higher costs. We effectively deploy enclaves in a distributed environment, dramatically improving current data handling techniques. To our best knowledge, this is the first work to demonstrate privacy-preserving localization in a multi-party environment with reasonable overhead.
more »
« less
A Hybrid Approach to Secure Function Evaluation using SGX
A protocol for two-party secure function evaluation (2P-SFE) aims to allow the parties to learn the output of function f of their private inputs, while leaking nothing more. In a sense, such a protocol realizes a trusted oracle that computes f and returns the result to both parties. There have been tremendous strides in efficiency over the past ten years, yet 2P-SFE protocols remain impractical for most real-time, online computations, particularly on modestly provisioned devices. Intel's Software Guard Extensions (SGX) provides hardware-protected execution environments, called enclaves, that may be viewed as trusted computation oracles. While SGX provides native CPU speed for secure computation, previous side-channel and micro-architecture attacks have demonstrated how security guarantees of enclaves can be compromised. In this paper, we explore a balanced approach to 2P-SFE on SGX-enabled processors by constructing a protocol for evaluating f relative to a partitioning of f. This approach alleviates the burden of trust on the enclave by allowing the protocol designer to choose which components should be evaluated within the enclave, and which via standard cryptographic techniques. We describe SGX-enabled SFE protocols (modeling the enclave as an oracle), and formalize the strongest-possible notion of 2P-SFE for our setting. We prove our protocol meets this notion when properly realized. We implement the protocol and apply it to two practical problems: privacy-preserving queries to a database, and a version of Dijkstra's algorithm for privacy-preserving navigation. Our evaluation shows that our SGX-enabled SFE scheme enjoys a 38x increase in performance over garbled-circuit-based SFE. Finally, we justify modeling of the enclave as an oracle by implementing protections against known side-channels.
more »
« less
- Award ID(s):
- 1642973
- PAR ID:
- 10118962
- Date Published:
- Journal Name:
- ACM Asia Conference on Computer and Communications Security
- Page Range / eLocation ID:
- 100 to 113
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Confidential computing solutions are crucial to address the cloud privacy concerns. Although SGX has witnessed significant adoption in the cloud, the reliance on hardware implementation is restrictive for cloud providers in terms of orchestrating deployments and providing stronger security to their clients’ enclaves. eOPF addresses this limitation by providing a comprehensive, secure hypervisor-level instrumentation framework with the ability to monitor all enclave-OS interactions and implement protected services. eOPF overcomes several challenges including bridging the semantic gap between the hypervisor and SGX and attesting the co-location of the framework with enclaves. Using eOPF, we implement two protected services that provide platform resource orchestration and complementary enclave side-channel defense. Our evaluation shows that eOPF incurs very low performance overhead (<2%) in its default state and only a modest overhead (geometric mean of 17% on SPEC) when strong, complementary side-channel defenses are enabled, making eOPF an efficient and practical solution for the cloud.more » « less
-
Trusted execution environments (TEEs) have been proposed to protect GPU computation for machine learning applications operating on sensitive data. However, existing GPU TEE solutions either require CPU and/or GPU hardware modification to realize TEEs for GPUs, which prevents current systems from adopting them, or rely on untrusted system software such as GPU device drivers. In this paper, we propose using CPU secure enclaves, e.g., Intel SGX, to build GPU TEEs without modifications to existing hardware. To tackle the fundamental limitations of these enclaves, such as no support for I/O operations, we design and develop GEVisor, a formally verified security reference monitor software to enable a trusted I/O path between enclaves and GPU without trusting the GPU device driver. GEVisor operates in the Virtual Machine Extension (VMX) root mode, monitors the host system software to prevent unauthorized access to the GPU code and data outside the enclave, and isolates the enclave GPU context from other contexts during GPU computation. We implement and evaluate GEVisor on a commodity machine with an Intel SGX CPU and an NVIDIA Pascal GPU. Our experimental results show that our approach maintains an average overhead of 13.1% for deep learning and 18% for GPU benchmarks compared to native GPU computation while providing GPU TEEs for existing CPU and GPU hardware.more » « less
-
Speculative-execution attacks, such as SgxSpectre, Foreshadow, and MDS attacks, leverage recently disclosed CPU hardware vulnerabilities and micro-architectural side channels to breach the confidentiality and integrity of Intel Software Guard eXtensions (SGX). Unlike traditional micro-architectural side-channel attacks, speculative-execution attacks extract any data in the enclave memory, which makes them very challenging to defeat purely from the software. However, to date, Intel has not completely mitigated the threats of speculative-execution attacks from the hardware. Hence, future attack variants may emerge. This paper proposes a software-based solution to speculative-execution attacks, even with the strong assumption that confidentiality of enclave memory is compromised. Our solution extends an existing work called HyperRace, which is a compiler-assisted tool for detecting Hyper-Threading based side-channel attacks against SGX enclaves, to thwart speculative-execution attacks from within SGX enclaves. It requires supports from the untrusted operating system, e.g., for temporarily disabling interrupts, but verifies the OS's behaviors. Additional microcode upgrades are required from Intel to secure the attestation flow.more » « less
-
Speculative execution side-channel vulnerabilities in micro-architecture processors have raised concerns about the security of Intel SGX. To understand clearly the security impact of this vulnerability against SGX, this paper makes the following studies: First, to demonstrate the feasibility of the attacks, we present SgxPectre Attacks (the SGX-variants of Spectre attacks) that exploit speculative execution side-channel vulnerabilities to subvert the confidentiality of SGX enclaves. We show that when the branch prediction of the enclave code can be influenced by programs outside the enclave, the control flow of the enclave program can be temporarily altered to execute instructions that lead to observable cache-state changes. An adversary observing such changes can learn secrets inside the enclave memory or its internal registers, thus completely defeating the confidentiality guarantee offered by SGX. Second, to determine whether real-world enclave programs are impacted by the attacks, we develop techniques to automate the search of vulnerable code patterns in enclave binaries using symbolic execution. Our study suggests that nearly any enclave program could be vulnerable to SgxPectre Attacks since vulnerable code patterns are available in most SGX runtimes (e.g., Intel SGX SDK, Rust-SGX, and Graphene-SGX). Third, we apply SgxPectre Attacks to steal seal keys and attestation keys from Intel signed quoting enclaves. The seal key can be used to decrypt sealed storage outside the enclaves and forge valid sealed data; the attestation key can be used to forge attestation signatures. For these reasons, SgxPectre Attacks practically defeat SGX's security protection. Finally, we evaluate Intel's existing countermeasures against SgxPectre Attacks and discusses the security implications.more » « less
An official website of the United States government

