skip to main content

Title: A Hybrid Approach to Secure Function Evaluation using SGX
A protocol for two-party secure function evaluation (2P-SFE) aims to allow the parties to learn the output of function f of their private inputs, while leaking nothing more. In a sense, such a protocol realizes a trusted oracle that computes f and returns the result to both parties. There have been tremendous strides in efficiency over the past ten years, yet 2P-SFE protocols remain impractical for most real-time, online computations, particularly on modestly provisioned devices. Intel's Software Guard Extensions (SGX) provides hardware-protected execution environments, called enclaves, that may be viewed as trusted computation oracles. While SGX provides native CPU speed for secure computation, previous side-channel and micro-architecture attacks have demonstrated how security guarantees of enclaves can be compromised. In this paper, we explore a balanced approach to 2P-SFE on SGX-enabled processors by constructing a protocol for evaluating f relative to a partitioning of f. This approach alleviates the burden of trust on the enclave by allowing the protocol designer to choose which components should be evaluated within the enclave, and which via standard cryptographic techniques. We describe SGX-enabled SFE protocols (modeling the enclave as an oracle), and formalize the strongest-possible notion of 2P-SFE for our setting. We prove our protocol more » meets this notion when properly realized. We implement the protocol and apply it to two practical problems: privacy-preserving queries to a database, and a version of Dijkstra's algorithm for privacy-preserving navigation. Our evaluation shows that our SGX-enabled SFE scheme enjoys a 38x increase in performance over garbled-circuit-based SFE. Finally, we justify modeling of the enclave as an oracle by implementing protections against known side-channels. « less
Authors:
;  ; ; ; ; ; ;
Award ID(s):
1642973
Publication Date:
NSF-PAR ID:
10118962
Journal Name:
ACM Asia Conference on Computer and Communications Security
Page Range or eLocation-ID:
100 to 113
Sponsoring Org:
National Science Foundation
More Like this
  1. Localization is one form of cooperative spectrum sensing that lets multiple sensors work together to estimate the location of a target transmitter. However, the requisite exchange of spectrum measurements leads to exposure of the physical loca- tion of participating sensors. Furthermore, in some cases, a com- promised participant can reveal the sensitive characteristics of all participants. Accordingly, a lack of sufficient guarantees about data handling discourages such devices from working together. In this paper, we provide the missing data protections by processing spectrum measurements within attestable containers or enclaves. Enclaves provide runtime memory integrity and confidentiality using hardware extensions and have been used to secure various applications [1]–[8]. We use these enclave features as building blocks for new privacy-preserving particle filter protocols that minimize disruption of the spectrum sensing ecosystem. We then instantiate this enclave using ARM TrustZone and Intel SGX, and we show that enclave-based particle filter protocols incur minimal overhead (adding 16 milliseconds of processing to the measurement processing function when using SGX versus unprotected computation) and can be deployed on resource-constrained platforms that support TrustZone (incurring only a 1.01x increase in processing time when doubling particle count from 10,000 to 20,000), whereas cryptographically-based approaches suffer from multiplemore »orders of magnitude higher costs. We effectively deploy enclaves in a distributed environment, dramatically improving current data handling techniques. To our best knowledge, this is the first work to demonstrate privacy-preserving localization in a multi-party environment with reasonable overhead.« less
  2. Secure multi-party computation (MPC) allows multiple parties to jointly compute the output of a function while preserving the privacy of any individual party's inputs to that function. As MPC protocols transition from research prototypes to real-world applications, the usability of MPC-enabled applications is increasingly critical to their successful deployment and wide adoption. Our Web-MPC platform, designed with a focus on usability, has been deployed for privacy-preserving data aggregation initiatives with the City of Boston and the Greater Boston Chamber of Commerce. After building and deploying an initial version of this platform, we conducted a heuristic evaluation to identify additional usability improvements and implemented corresponding application enhancements. However, it is difficult to gauge the effectiveness of these changes within the context of real-world deployments using traditional web analytics tools without compromising the security guarantees of the platform. This work consists of two contributions that address this challenge: (1) the Web-MPC platform has been extended with the capability to collect web analytics using existing MPC protocols, and (2) this capability has been leveraged to conduct a usability study comparing the two version of Web-MPC (before and after the heuristic evaluation and associated improvements). While many efforts have focused on ways to enhancemore »the usability of privacy-preserving technologies, this study can serve as a model for using a privacy-preserving data-driven approach in evaluating or enhancing the usability of privacy-preserving websites and applications deployed in real-world scenarios. The data collected in this study yields insights about the interplay between usability and security that can help inform future implementations of applications that employ MPC.« less
  3. Incoercible multi-party computation (Canetti-Gennaro ’96) allows parties to engage in secure computation with the additional guarantee that the public transcript of the computation cannot be used by a coercive outsider to verify representations made by the parties regarding their inputs, outputs, and local random choices. That is, it is guaranteed that the only deductions regarding the truthfulness of such representations, made by an outsider who has witnessed the communication among the parties, are the ones that can be drawn just from the represented inputs and outputs alone. To date, all incoercible secure computation protocols withstand coercion of only a fraction of the parties, or else assume that all parties use an execution environment that makes some crucial parts of their local states physically inaccessible even to themselves. We consider, for the first time, the setting where all parties are coerced, and the coercer expects to see the entire history of the computation. We allow both protocol participants and external attackers to access a common reference string which is generated once and for all by an uncorruptable trusted party. In this setting we construct: - A general multi-party function evaluation protocol, for any number of parties, that withstands coercion of allmore »parties, as long as all parties use the prescribed ``faking algorithm'' upon coercion. This holds even if the inputs and outputs represented by coerced parties are globally inconsistent with the evaluated function. - A general two-party function evaluation protocol that withstands even the %``mixed'' case where some of the coerced parties do follow the prescribed faking algorithm. (For instance, these parties might collude with the coercer and disclose their true local states.) This protocol is limited to functions where the input of at least one of the parties is taken from a small (poly-size) domain. It uses fully deniable encryption with public deniability for one of the parties; when instantiated using the fully deniable encryption of Canetti, Park, and Poburinnaya (Crypto'20), it takes 3 rounds of communication. Both protocols operate in the common reference string model, and use fully bideniable encryption (Canetti Park and Poburinnaya, Crypto'20) and sub-exponential indistinguishability obfuscation. Finally, we show that protocols with certain communication pattern cannot be incoercible, even in a weaker setting where only some parties are coerced.« less
  4. Multi-user oblivious storage allows users to access their shared data on the cloud while retaining access pattern obliviousness and data confidentiality simultaneously. Most secure and efficient oblivious storage systems focus on the utilization of the maximum network bandwidth in serving concurrent accesses via a trusted proxy. How- ever, since the proxy executes a standard ORAM protocol over the network, the performance is capped by the network bandwidth and latency. Moreover, some important features such as access control and security against active adversaries have not been thoroughly explored in such proxy settings. In this paper, we propose MOSE, a multi-user oblivious storage system that is efficient and enjoys from some desirable security properties. Our main idea is to harness a secure enclave, namely Intel SGX, residing on the untrusted storage server to execute proxy logic, thereby, minimizing the network bottleneck of proxy-based designs. In this regard, we address various technical design challenges such as memory constraints, side-channel attacks and scalability issues when enabling proxy logic in the secure enclave. We present a formal security model and analysis for secure enclave multi-user ORAM with access control. We optimize MOSE to boost its throughput in serving concurrent requests. We implemented MOSE and evaluatedmore »its performance on commodity hardware. Our evaluation confirmed the efficiency of MOSE, where it achieves approximately two orders of magnitudes higher throughput than the state-of-the-art proxy-based design, and also, its performance is scalable proportional to the available system resources.« less
  5. Intel Software Guard Extensions (SGX) allows users to perform secure computation on platforms that run untrusted software. To validate that the computation is correctly initialized and that it executes on trusted hardware, SGX supports attestation providers that can vouch for the user’s computation. Communication with these attestation providers is based on the Extended Privacy ID (EPID) protocol, which not only validates the computation but is also designed to maintain the user’s privacy. In particular, EPID is designed to ensure that the attestation provider is unable to identify the host on which the computation executes. In this work we investigate the security of the Intel implementation of the EPID protocol. We identify an implementation weakness that leaks information via a cache side channel. We show that a malicious attestation provider can use the leaked information to break the unlinkability guarantees of EPID. We analyze the leaked information using a lattice-based approach for solving the hidden number problem, which we adapt to the zero-knowledge proof in the EPID scheme, extending prior attacks on signature schemes.