Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Localization is one form of cooperative spectrum sensing that lets multiple sensors work together to estimate the location of a target transmitter. However, the requisite exchange of spectrum measurements leads to exposure of the physical loca- tion of participating sensors. Furthermore, in some cases, a com- promised participant can reveal the sensitive characteristics of all participants. Accordingly, a lack of sufficient guarantees about data handling discourages such devices from working together. In this paper, we provide the missing data protections by processing spectrum measurements within attestable containers or enclaves. Enclaves provide runtime memory integrity and confidentiality using hardware extensions and have been used to secure various applications [1]–[8]. We use these enclave features as building blocks for new privacy-preserving particle filter protocols that minimize disruption of the spectrum sensing ecosystem. We then instantiate this enclave using ARM TrustZone and Intel SGX, and we show that enclave-based particle filter protocols incur minimal overhead (adding 16 milliseconds of processing to the measurement processing function when using SGX versus unprotected computation) and can be deployed on resource-constrained platforms that support TrustZone (incurring only a 1.01x increase in processing time when doubling particle count from 10,000 to 20,000), whereas cryptographically-based approaches suffer from multiplemore »
-
We report results of an experiment in applying deep Q-learning for dynamic spectrum sharing (DSS) in the Alleys of Austin scenario from the DARPA Spectrum Collaboration Challenge. This scenario mimics mobile operations in an urban environment by up to five squads (teams) of soldiers. Each team operates its own wireless network. We consider teamwise– distributed DSS, where there is no central agent to coordinate spectrum usage across teams, but spectrum usage within each team is coordinated by a single member of that team. The spatial distributions of the soldiers creates opportunities for spatial reuse by certain subsets of the teams, and our experiment is set up to evaluate whether the deep Q-learning algorithm can discover and take advantage of these opportunities. The results show that deep Q-learning is able to take advantage of spatial reuse and that doing so results in better performance than a fair-share, disjoint spectrum allocation among the teams.
-
An algorithm to identify the bottleneck nodes linking two component networks in a simple network of networks (NoN) configuration is proposed. The proposed bottleneck identification algorithm is based on applying a support vector machine on clustered packet delay measurements. This algorithm has the advantage that it requires almost no information about the topology of the underlying NoN. Simulation results show that this algorithm can provide very good detection performance when the component networks of the NoN are not too small in size, or when the connectivity between nodes within the component networks is not too sparse.
-
A dynamic spectrum sharing problem with a mixed collaborative/competitive objective and partial information about peers’ performances that arises from the DARPA Spectrum Collaboration Challenge is considered. Because of the very high complexity of the problem and the enormous size of the state space, it is broken down into the subproblems of channel selection, flow admission control, and transmission schedule assignment. The channel selection problem is the focus of this paper. A reinforcement learning algorithm based on a reduced state is developed to select channels, and a neural network is used as a function approximator to fill in missing values in the resulting input-action matrix. The performance is compared with that obtained by a hand-tuned expert system.
-
A protocol for two-party secure function evaluation (2P-SFE) aims to allow the parties to learn the output of function f of their private inputs, while leaking nothing more. In a sense, such a protocol realizes a trusted oracle that computes f and returns the result to both parties. There have been tremendous strides in efficiency over the past ten years, yet 2P-SFE protocols remain impractical for most real-time, online computations, particularly on modestly provisioned devices. Intel's Software Guard Extensions (SGX) provides hardware-protected execution environments, called enclaves, that may be viewed as trusted computation oracles. While SGX provides native CPU speed for secure computation, previous side-channel and micro-architecture attacks have demonstrated how security guarantees of enclaves can be compromised. In this paper, we explore a balanced approach to 2P-SFE on SGX-enabled processors by constructing a protocol for evaluating f relative to a partitioning of f. This approach alleviates the burden of trust on the enclave by allowing the protocol designer to choose which components should be evaluated within the enclave, and which via standard cryptographic techniques. We describe SGX-enabled SFE protocols (modeling the enclave as an oracle), and formalize the strongest-possible notion of 2P-SFE for our setting. We prove our protocolmore »
-
With close to native performance, Linux containers are becoming the de facto platform for cloud computing. While various solutions have been proposed to secure applications and containers in the cloud environment by leveraging Intel SGX, most cloud operators do not yet offer SGX as a service. This is likely due to a number of security, scalability, and usability concerns coming from both cloud providers and users. Cloud operators worry about the security guarantees of unofficial SDKs, limited support for remote attestation within containers, limited physical memory for the Enclave Page Cache (EPC) making it difficult to support hundreds of enclaves, and potential DoS attacks against EPC by malicious users. Meanwhile, end users need to worry about careful program partitioning to reduce the TCB and adapting legacy applications to use SGX. We note that most of these concerns are the result of an incomplete infrastructure, from the OS to the application layer. We address these concerns with lxcsgx, which allows SGX applications to run inside containers while also: enabling SGX remote attestation for containerized applications, enforcing EPC memory usage control on a per-container basis, providing a general software TPM using SGX to augment legacy applications, and supporting partitioning with a GCCmore »
-
We consider the problem of jammer placement to partition a wireless network, where the network nodes and jammers are located in the real plane. In previous research, we found optimal and suboptimal jammer placements by reducing the search space for the jammers to the locations of the network nodes. In this paper, we develop techniques to find optimal jammer placements over all possible jammer placements in the real plane. Our approach finds a set of candidate jammer locations (CJLs) such that a jammer-placement solution using the CJLs achieves the minimum possible cardinality among all possible jammer placements in the real plane. The CJLs can be used directly with the optimal and fast, suboptimal algorithms for jammer placement from our previous work.
-
Wireless communications networks are often mod- eled as graphs in which the vertices represent wireless devices and the edges represent the communication links between them. However, graphs fail to capture the time-varying nature of wire- less networks. Temporal networks are graphs in which the sets of nodes or edges are time-varying. We consider the most common case, in which the set of nodes is fixed but the presence of edges changes over time. Most previous work on analyzing temporal networks has focused on summary measures that combine the contributions of different paths by using different weights for paths with different delays. Such summary measures are efficient to compute but may lose valuable information about the temporal behavior of the network. We propose techniques that characterize the delays of all paths between nodes in temporal networks. We then apply these techniques to identify dominant patterns in the temporal paths connecting nodes. Example temporal networks are used to illustrate these phenomena, and we consider implications to wireless networks.
-
Wireless communication systems are susceptible to both unintentional interference and intentional jamming attacks. For mesh and ad-hoc networks, interference affects the network topology and can cause the network to partition, which may completely disrupt the applications or missions that depend on the network. Defensive techniques can be applied to try to prevent such disruptions to the network topology. Most previous research in this area is on improving network resilience by adapting the network topology when a jamming attack occurs. In this paper, we consider making a network more robust to jamming attacks before any such attack has happened. We consider a network in which the positions of most of the radios in the network are not under the control of the network operator, but the network operator can position a few “helper nodes” to add robustness against jamming. For instance, most of the nodes are radios on vehicles participating in a mission, and the helper nodes are mounted on mobile robots or UAVs. We develop techniques to determine where to position the helper nodes to maximize the robustness of the network to certain jamming attacks aimed at disrupting the network topology. Using our recent results for quickly determining how tomore »