skip to main content


Title: Liquid Ammonia Chemical Lithiation: An Approach for High-Energy and High-Voltage Si–Graphite|Li 1+x Ni 0.5 Mn 1.5 O 4 Li-Ion Batteries
Award ID(s):
1626065 1831406
NSF-PAR ID:
10118989
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ACS Applied Energy Materials
Volume:
2
Issue:
7
ISSN:
2574-0962
Page Range / eLocation ID:
5019 to 5028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Si‐based anodes with a stiff diamond structure usually suffer from sluggish lithiation/delithiation reaction due to low Li‐ion and electronic conductivity. Here, a novel ternary compound ZnSi2P3with a cation‐disordered sphalerite structure, prepared by a facile mechanochemical method, is reported, demonstrating faster Li‐ion and electron transport and greater tolerance to volume change during cycling than the existing Si‐based anodes. A composite electrode consisting of ZnSi2P3and carbon achieves a high initial Coulombic efficiency (92%) and excellent rate capability (950 mAh g−1at 10 A g−1) while maintaining superior cycling stability (1955 mAh g−1after 500 cycles at 300 mA g−1), surpassing the performance of most Si‐ and P‐based anodes ever reported. The remarkable electrochemical performance is attributed to the sphalerite structure that allows fast ion and electron transport and the reversible Li‐storage mechanism involving intercalation and conversion reactions. Moreover, the cation‐disordered sphalerite structure is flexible to ionic substitutions, allowing extension to a family of Zn(Cu)Si2+xP3solid solution anodes (x= 0, 2, 5, 10) with large capacity, high initial Coulombic efficiency, and tunable working potentials, representing attractive anode candidates for next‐generation, high‐performance, and low‐cost Li‐ion batteries.

     
    more » « less
  2. Li 2 S is the key precursor for synthesizing thio-LISICON electrolytes employed in solid state batteries. However, conventional synthesis techniques such as carbothermal reduction of Li 2 SO 4 aren't suitable for the generation of low-cost, high-purity Li 2 S. Metathesis, in which LiCl is reacted with Na 2 S in ethanol, is a scalable synthesis method conducted at ambient conditions. The NaCl byproduct is separated from the resulting Li 2 S solution, and the solvent is removed by evaporation and thermal annealing. However, the annealing process reveals the presence of oxygenated impurities in metathesis Li 2 S that are not usually observed when recovering Li 2 S from ethanol. In this work we investigate the underlying mechanism of impurity formation, finding that they likely derive from the decomposition of alkoxide species that originate from the alcoholysis of the Na 2 S reagent. With this mechanism in mind, several strategies to improve Li 2 S purity are explored. In particular, drying the metathesis Li 2 S under H 2 S at low temperature was most effective, resulting in high-purity Li 2 S while retaining a beneficial nanocrystal morphology (∼10 nm). Argyrodite electrolytes synthesized from this material exhibited essentially identical phase purity, ionic conductivity (3.1 mS cm −1 ), activation energy (0.19 eV), and electronic conductivity (6.4 × 10 −6 mS cm −1 ) as that synthesized from commercially available battery-grade Li 2 S. 
    more » « less
  3. Abstract

    Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature.

     
    more » « less
  4. Abstract

    Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature.

     
    more » « less