skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sherlock - A tool for verification of neural network feedback systems: demo abstract
We present an approach for the synthesis and verification of neural network controllers for closed loop dynamical systems, modelled as an ordinary differential equation. Feedforward neural networks are ubiquitous when it comes to approximating functions, especially in the machine learning literature. The proposed verification technique tries to construct an over-approximation of the system trajectories using a combination of tools, such as, Sherlock and Flow*. In addition to computing reach sets, we incorporate counter examples or bad traces into the synthesis phase of the controller as well. We go back and forth between verification and counter example generation until the system outputs a fully verified controller, or the training fails to terminate in a neural network which is compliant with the desired specifications. We demonstrate the effectiveness of our approach over a suite of benchmarks ranging from 2 to 17 variables.  more » « less
Award ID(s):
1740079 1750009
PAR ID:
10119090
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
AAAI Symposium on Verification of Neural Networks
Volume:
2019
Page Range / eLocation ID:
262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper aims to enhance the computational efficiency of safety verification of neural network control systems by developing a guaranteed neural network model reduction method. First, a concept of model reduction precision is proposed to describe the guaranteed distance between the outputs of a neural network and its reduced-size version. A reachability-based algorithm is proposed to accurately compute the model reduction precision. Then, by substituting a reduced-size neural network controller into the closed-loop system, an algorithm to compute the reachable set of the original system is developed, which is able to support much more computationally efficient safety verification processes. Finally, the developed methods are applied to a case study of the Adaptive Cruise Control system with a neural network controller, which is shown to significantly reduce the computational time of safety verification and thus validate the effectiveness of the method. 
    more » « less
  2. This paper presents Verisig, a hybrid system approach to verifying safety properties of closed-loop systems using neural networks as controllers. We focus on sigmoid-based networks and exploit the fact that the sigmoid is the solution to a quadratic differential equation, which allows us to transform the neural network into an equivalent hybrid system. By composing the network's hybrid system with the plant's, we transform the problem into a hybrid system verification problem which can be solved using state-of-the-art reachability tools. We show that reachability is decidable for networks with one hidden layer and decidable for general networks if Schanuel's conjecture is true. We evaluate the applicability and scalability of Verisig in two case studies, one from reinforcement learning and one in which the neural network is used to approximate a model predictive controller. 
    more » « less
  3. N. Matni, M. Morari (Ed.)
    This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers. Given a neural network, we use an existing verification algorithm to construct inclusion functions for its input-output behavior. Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system. This embedding provides a scalable approach for safety analysis of the neural control loop while preserving the nonlinear structure of the system. We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system. We design an algorithm to leverage this computational advantage through partitioning strategies, improving our reachable set estimates while balancing its runtime with tunable parameters. We demonstrate the performance of this algorithm through two case studies. First, we demonstrate this method’s strength in complex nonlinear environments. Then, we show that our approach matches the performance of the state-of-the art verification algorithm for linear discretized systems. 
    more » « less
  4. There has been an increasing interest in using neural networks in closed-loop control systems to improve performance and reduce computational costs for on-line implementation. However, providing safety and stability guarantees for these systems is challenging due to the nonlinear and compositional structure of neural networks. In this paper, we propose a novel forward reachability analysis method for the safety verification of linear time-varying systems with neural networks in feedback interconnection. Our technical approach relies on abstracting the nonlinear activation functions by quadratic constraints, which leads to an outer-approximation of forward reachable sets of the closed-loop system. We show that we can compute these approximate reachable sets using semidefinite programming. We illustrate our method in a quadrotor example, in which we first approximate a nonlinear model predictive controller via a deep neural network and then apply our analysis tool to certify finite-time reachability and constraint satisfaction of the closed-loop system. 
    more » « less
  5. This article introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly non-linear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute therobustness, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent’s task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and naïve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To address this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion ofcontroller network dropout, where we approximate the NN controller in several timesteps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable back-propagation over longer time horizons and trajectories over higher-dimensional state spaces. We demonstrate the efficacy of our approach on various motion planning applications requiring complex spatio-temporal and sequential tasks ranging over thousands of timesteps. 
    more » « less