skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analyzing the interplay between local CPG activity and sensory signals for inter-leg coordination in Drosophila
Leg coordination is important for walking robots. Insects are able to effectively walk despite having small metabolisms and size, and understanding the neural mechanisms which govern their walking could prove useful for improving legged robots. In order to explore the possible neural systems responsible for inter-leg coordination, leg positional data for walking fruit flies of the species Drosophila melanogaster was recorded, where one individual leg was amputated at the base of the tibia. These experiments have shown that when amputated, the remaining stump oscillates in a speed-dependent manner. At low walking speeds there is a wide range of possible stump periods, and this variance collapses down to a minimum as walking speed increases. We believe this behavior can be explained by noisy pattern generation networks (CPGs) within the legs, with intra-leg load feedback and inter-leg global signals stabilizing the network. In this paper, this biological data will be analyzed so that a simplified neuromechanical model can be designed in order to explain this behavior.  more » « less
Award ID(s):
1704436
PAR ID:
10119321
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
8th International Conference, Living Machines 2019
Page Range / eLocation ID:
342-345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lower-limb amputation limits inherent motor abundance in the locomotor system and impairs walking mechanics. Able- bodied walkers vary ankle torque to adjust step-to-step leg force production as measured by resultant ground reaction forces. Simultaneously, knee torque covaries with ankle torque to act as a brake, resulting in consistent peak leg power output meas- ured by external mechanical power generated on the center of mass. Our objective was to test how leg force control during gait is affected by joint torque variance structure in the amputated limb. Within the framework of the uncontrolled manifold analysis, we measured the Index of Motor Abundance (IMA) to quantify joint torque variance structure of amputated legs and its effect on leg force, where IMA>0 indicates a stabilizing structure. We further evaluated the extent to which IMA in amputated legs used individual (INV) and coordinated (COV) joint control strategies. Amputated legs produced IMA and INV values similar to intact legs, indicating that torque deviations of the prosthetic ankle can modulate leg force at the end of stance phase. However, we observed much lower COV values in the amputated leg relative to intact legs indicating that biological knee joint torque of the amputated leg does not covary with prosthetic ankle torque. This observation sug- gests inter-joint coordination during gait is significantly limited as a result of transtibial amputation and may help explain the higher rate of falls and impaired balance recovery in this population, pointing to a greater need to focus on inter-joint coordination within the amputated limb. 
    more » « less
  2. null (Ed.)
    Walking requires control of where and when to step for stable interlimb coordination. Motorized split-belt treadmills which constrain each leg to move at different speeds lead to adaptive changes to limb coordination that result in after-effects (e.g. gait asymmetry) on return to normal treadmill walking. These after-effects indicate an underlying neural adaptation. Here, we assessed the transfer of motorized split-belt treadmill adaptations with a custom non-motorized split-belt treadmill where each belt can be self-propelled at different speeds. Transfer was indicated by the presence of after-effects in step length, foot placement and step timing differences. Ten healthy participants adapted on a motorized split-belt treadmill (2 : 1 speed ratio) and were then assessed for after-effects during subsequent non-motorized treadmill and motorized tied-belt treadmill walking. We found that after-effects in step length difference during transfer to non-motorized split-belt walking were primarily associated with step time differences. Conversely, residual after-effects during motorized tied-belt walking following transfer were associated with foot placement differences. Our data demonstrate decoupling of adapted spatial and temporal locomotor control during transfer to a novel context, suggesting that foot placement and step timing control can be independently modulated during walking. 
    more » « less
  3. Hunt, Alexander; Vouloutsi, Vasiliki; Moses, Kenneth; Quinn, Roger; Mura, Anna; Prescott, Tony; Verschure, Paul F. (Ed.)
    Load sensing is critical for walking behavior in animals, who have evolved a number of sensory organs and neural systems to improve their agility. In particular, insects measure load on their legs using campaniform sensilla (CS), sensory neurons in the cuticle of high-stress portions of the leg. Extracellular recordings from these sensors in a behaving animal are difficult to collect due to interference from muscle potentials, and some CS groups are largely inaccessible due to their placement on the leg. To better understand what loads the insect leg experiences and what sensory feedback the nervous system may receive during walking, we constructed a dynamically-scaled robotic model of the leg of the stick insect Carausius morosus. We affixed strain gauges in the same positions and orientations as the major CS groups on the leg, i.e., 3, 4, 6A, and 6B. The robotic leg was mounted to a vertically-sliding linear guide and stepped on a treadmill to simulate walking. Data from the strain gauges was run through a dynamic model of CS discharge developed in a previous study. Our experiments reveal stereotypical loading patterns experienced by the leg, even as its weight and joint stiffness is altered. Furthermore, our simulated CS strongly signal the beginning and end of stance phase, two key events in the coordination of walking. 
    more » « less
  4. Animals utilize a number of neuronal systems to produce locomotion. One type of sensory organ that contributes in insects is the campaniform sensillum (CS) that measures the load on their legs. Groups of the receptors are found on high stress regions of the leg exoskeleton and they have significant effects in adapting walking behavior. Recording from these sensors in freely moving animals is limited by technical constraints. To better understand the load feedback signaled by CS to the nervous system, we have constructed a dynamically scaled robotic model of the Carausius morosus stick insect middle leg. The leg steps on a treadmill and supports weight during stance to simulate body weight. Strain gauges were mounted in the same positions and orientations as four key CS groups (Groups 3, 4, 6B, and 6A). Continuous data from the strain gauges were processed through a previously published dynamic computational model of CS discharge. Our experiments suggest that under different stepping conditions (e.g., changing “body” weight, phasic load stimuli, slipping foot), the CS sensory discharge robustly signals increases in force, such as at the beginning of stance, and decreases in force, such as at the end of stance or when the foot slips. Such signals would be crucial for an insect or robot to maintain intra- and inter-leg coordination while walking over extreme terrain. 
    more » « less
  5. Miniaturizing legged robot platforms is challenging due to hardware limitations that constrain the number, power density, and precision of actuators at that size. By leveraging design principles of quasi-passive walking robots at any scale, stable locomotion and steering can be achieved with simple mechanisms and open-loop control. Here, we present the design and control of "Zippy", the smallest self-contained bipedal walking robot at only 3.6 cm tall. Zippy has rounded feet, a single motor without feedback control, and is capable of turning, skipping, and ascending steps. At its fastest pace, the robot achieves a forward walking speed of 25 cm/s, which is10 leg lengths per second, the fastest biped robot of any size by that metric. This work explores the design and performance of the robot and compares it to similar dynamic walking robots at larger scales. 
    more » « less