skip to main content


Title: A Measurement Study of Authentication Rate-Limiting Mechanisms of Modern Websites
Text passwords remain a primary means for user authentication on modern computer systems. However, recent studies have shown the promises of guessing user passwords efficiently with auxiliary information of the targeted accounts, such as the users' personal information, previously used passwords, or those used in other systems. Authentication rate-limiting mechanisms, such as account lockout and login throttling, are common methods to defeat online password cracking attacks. But to date, no published studies have investigated how authentication rate-limiting is implemented by popular websites. In this paper, we present a measurement study of such countermeasures against online password cracking. Towards this end, we propose a black-box approach to modeling and validating the websites' implementation of the rate-limiting mechanisms. We applied the tool to examine all 182 websites that we were able to analyze in the Alexa Top 500 websites in the United States. The results are rather surprising: 131 websites (72%) allow frequent, unsuccessful login attempts without account lockout or login throttling (though some of these websites force the adversary to lower the login frequency or constantly change his IP addresses to circumvent the rate-limiting enforcement). The remaining 51 websites are not absolutely secure either: 28 websites may block a legitimate user with correct passwords when the account is locked out, effectively enabling authentication denial-of-service attacks.  more » « less
Award ID(s):
1718084
NSF-PAR ID:
10119363
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 34th Annual Computer Security Applications Conference
Page Range / eLocation ID:
89 to 100
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large-scale online password guessing attacks are widespread and pose a persistant privacy and security threat to users. The common method for mitigating the risk of online cracking is to lock out the user after a fixed number ($K$) of consecutive incorrect login attempts. Selecting the value of $K$ induces a classic security-usability trade-off. When $K$ is too large, a hacker can (quickly) break into a significant fraction of user accounts, but when $K$ is too low, we will start to annoy honest users by locking them out after a few mistakes. Motivated by the observation that honest user mistakes typically look quite different from an online attacker's password guesses, we introduce $\DALock$, a {\em distribution-aware} password lockout mechanism to reduce user annoyance while minimizing user risk. As the name suggests, $\DALock$ is designed to be aware of the frequency and popularity of the password used for login attacks. At the same time, standard throttling mechanisms (e.g., $K$-strikes) are oblivious to the password distribution. In particular, $\DALock$ maintains an extra ``hit count" in addition to ``strike count" for each user, which is based on (estimates of) the cumulative probability of {\em all} login attempts for that particular account. We empirically evaluate $\DALock$ with an extensive battery of simulations using real-world password datasets. In comparison with the traditional $K$-strikes mechanism, {our simulations indicate that} $\DALock$ offers a superior {simulated} security/usability trade-off. For example, in one of our simulations, we are able to reduce the success rate of an attacker to $0.05\%$ (compared to $1\%$ for the $3$-strikes mechanism) whilst simultaneously reducing the unwanted lockout rate for accounts that are not under attack to just $0.08\%$ (compared to $4\%$ for the $3$-strikes mechanism). 
    more » « less
  2. We introduce password strength signaling as a potential defense against password cracking. Recent breaches have exposed billions of user passwords to the dangerous threat of offline password cracking attacks. An offline attacker can quickly check millions (or sometimes billions/trillions) of password guesses by comparing a candidate password’s hash value with a stolen hash from a breached authentication server. The attacker is limited only by the resources he is willing to invest. We explore the feasibility of applying ideas from Bayesian Persuasion to password authentication. Our key idea is to have the authentication server store a (noisy) signal about the strength of each user password for an offline attacker to find. Surprisingly, we show that the noise distribution for the signal can often be tuned so that a rational (profit-maximizing) attacker will crack fewer passwords. The signaling scheme exploits the fact that password cracking is not a zero-sum game i.e., it is possible for an attacker to increase their profit in a way that also reduces the number of cracked passwords. Thus, a well-defined signaling strategy will encourage the attacker to reduce his guessing costs by cracking fewer passwords. We use an evolutionary algorithm to compute the optimal signaling scheme for the defender. We evaluate our mechanism on several password datasets and show that it can reduce the total number of cracked passwords by up to 12% (resp. 5%) of all users in defending against offline (resp. online) attacks. While the results of our empirical analysis are positive we stress that we view the current solution as a proof-of-concept as there are important societal concerns that would need to be considered before adopting our password strength signaling solution. 
    more » « less
  3. In the past few years billions of user passwords have been exposed to the threat of offline cracking attempts. Such brute-force cracking attempts are increasingly dangerous as password cracking hardware continues to improve and as users continue to select low entropy passwords. Key-stretching techniques such as hash iteration and memory hard functions can help to mitigate the risk, but increased key-stretching effort necessarily increases authentication delay so this defense is fundamentally constrained by usability concerns. We introduce Just in Time Hashing (JIT), a client side key-stretching algorithm to protect user passwords against offline brute-force cracking attempts without increasing delay for the user. The basic idea is to exploit idle time while the user is typing in their password to perform extra key-stretching. As soon as the user types in the first character(s) of their password our algorithm immediately begins filling memory with hash values derived from the character(s) that the user has typed thus far. We conduct a user study to guide the development of JIT e.g. by determining how much extra key-stretching could be performed during idle cycles or how many consecutive deletions JIT may need to handle. Our security analysis demonstrates that JIT can substantially increase guessing costs over traditional key-stretching algorithms with equivalent (or less) authentication delay. Specifically an empirical evaluation using existing password datasets demonstrates that JIT increases guessing costs by nearly an order of magnitude in comparison to standard key-stretching techniques with comparable delay. We provide a proof-of-concept implementation of a Just in Time Hashing algorithm by modifying Argon2. 
    more » « less
  4. It is well known that text-based passwords are hard to remember and that users prefer simple (and non-secure) passwords. However, despite extensive research on the topic, no principled account exists for explaining when a password will be forgotten. This paper contributes new data and a set of analyses building on the ecological theory of memory and forgetting. We propose that human memory naturally adapts according to an estimate of how often a password will be needed, such that often used, important passwords are less likely to be forgotten. We derive models for login duration and odds of recall as a function of rate of use and number of uses thus far. The models achieved a root-mean-square error (RMSE) of 1.8 seconds for login duration and 0.09 for recall odds for data collected in a month-long field experiment where frequency of password use was controlled. The theory and data shed new light on password management, account usage, password security and memorability. 
    more » « less
  5. Galdi, Celemente ; Jarecki, Stanislaw (Ed.)
    In the past decade billions of user passwords have been exposed to the dangerous threat of offline password cracking attacks. An offline attacker who has stolen the cryptographic hash of a user's password can check as many password guesses as s/he likes limited only by the resources that s/he is willing to invest to crack the password. Pepper and key-stretching are two techniques that have been proposed to deter an offline attacker by increasing guessing costs. Pepper ensures that the cost of rejecting an incorrect password guess is higher than the (expected) cost of verifying a correct password guess. This is useful because most of the offline attacker's guesses will be incorrect. Unfortunately, as we observe the traditional peppering defense seems to be incompatible with modern memory hard key-stretching algorithms such as Argon2 or Scrypt. We introduce an alternative to pepper which we call Cost-Asymmetric Memory Hard Password Authentication which benefits from the same cost-asymmetry as the classical peppering defense i.e., the cost of rejecting an incorrect password guess is larger than the expected cost to authenticate a correct password guess. When configured properly we prove that our mechanism can only reduce the percentage of user passwords that are cracked by a rational offline attacker whose goal is to maximize (expected) profit i.e., the total value of cracked passwords minus the total guessing costs. We evaluate the effectiveness of our mechanism on empirical password datasets against a rational offline attacker. Our empirical analysis shows that our mechanism can reduce the percentage of user passwords that are cracked by a rational attacker by up to 10%. 
    more » « less