skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Color‐Switching of Plasmonic Nanoparticle Films
Abstract The fast and reversible switching of plasmonic color holds great promise for many applications, while its realization has been mainly limited to solution phases, achieving solid‐state plasmonic color‐switching has remained a significant challenge owing to the lack of strategies in dynamically controlling the nanoparticle separation and their plasmonic coupling. Herein, we report a novel strategy to fabricate plasmonic color‐switchable silver nanoparticle (AgNP) films. Using poly(acrylic acid) (PAA) as the capping ligand and sodium borate as the salt, the borate hydrolyzes rapidly in response to moisture and produces OHions, which subsequently deprotonate the PAA on AgNPs, change the surface charge, and enable reversible tuning of the plasmonic coupling among adjacent AgNPs to exhibit plasmonic color‐switching. Such plasmonic films can be printed as high‐resolution invisible patterns, which can be readily revealed with high contrast by exposure to trace amounts of water vapor.  more » « less
Award ID(s):
1808788
PAR ID:
10119405
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
45
ISSN:
1433-7851
Page Range / eLocation ID:
p. 16307-16313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dynamic optical modulation in response to stimuli provides exciting opportunities for designing novel sensing, actuating, and authentication devices. Here, we demonstrate that the reversible swelling and deswelling of crosslinked polymer colloidal spheres in response to pH and temperature changes can be utilized to drive the assembly and disassembly of the embedded gold nanoparticles (AuNPs), inducing their plasmonic coupling and decoupling and, correspondingly, color changes. The multi‐responsive colloids are created by depositing a monolayer of AuNPs on the surface of resorcinol‐formaldehyde (RF) nanospheres, then overcoating them with an additional RF layer, followed by a seeded growth process to enlarge the AuNPs and reduce their interparticle separation to induce significant plasmonic coupling. This configuration facilitates dynamic modulation of plasmonic coupling through the reversible swelling/deswelling of the polymer spheres in response to pH and temperature changes. The rapid and repeatable transitions between coupled and decoupled plasmonic states of AuNPs enable reversible color switching when the polymer spheres are in colloidal form or embedded in hydrogel substrates. Furthermore, leveraging the photothermal effect and stimuli‐responsive plasmonic coupling of the embedded AuNPs enables the construction of hybrid hydrogel films featuring switchable anticounterfeiting patterns, showcasing the versatility and potential of this multi‐stimuli‐responsive plasmonic system. 
    more » « less
  2. Abstract Drop‐casting manganese oxide (MnO2) hollow nanospheres synthesized via a simple surface‐initiated redox route produces thin films exhibiting angle‐independent structural colors. The colors can rapidly change in response to high‐humidity dynamic water vapor (relative humidity > 90%) with excellent reversibility. When the film is triggered by dynamic water vapor with a relative humidity of ≈100%, the color changes with an optimal wavelength redshift of ≈60 nm at ≈600 ms while there is no shift under static water vapor. The unique selective response originates from the nanoscale porosity formed in the shells by randomly stacked MnO2nanosheets, which enhances the capillary condensation of dynamic water vapor and promotes the change of their effective refractive index for rapid color switching. The repeated color‐switching tests over 100 times confirm the durability and reversibility of the MnO2film. The potential of these films for applications in anti‐counterfeiting and information encryption is further demonstrated by reversible encoding and decoding initiated exclusively by exposure to human breath. 
    more » « less
  3. Abstract The dynamic optical switch of plasmonic nanostructures is highly desirable due to its promising applications in many smart optical devices. To address the challenges in the reversibility and transmittance contrast of the plasmonic electrochromic devices, here, a strategy is reported to fabricate color switchable electrochromic films through electro‐responsive dissolution and deposition of Ag on predefined hollow shells of Au/Ag alloy. Using the hollow Au/Ag alloy nanostructures as stable seeds for site‐specific deposition of Ag, elimination of the random self‐nucleation events is enabled and optimal reversibility in color switching is allowed. The hollow structure further enables excellent transmittance contrast between the bleached and colored states. With its additional advantages such as the convenience for preparation, high sensitivity, and field‐tunable optical property, it is believed that this new electrochromic film represents a unique platform for designing novel smart optical devices. 
    more » « less
  4. Multiferroic materials are an interesting functional material family combining two ferroic orderings, e.g. , ferroelectric and ferromagnetic orderings, or ferroelectric and antiferromagnetic orderings, and find various device applications, such as spintronics, multiferroic tunnel junctions, etc. Coupling multiferroic materials with plasmonic nanostructures offers great potential for optical-based switching in these devices. Here, we report a novel nanocomposite system consisting of layered Bi 1.25 AlMnO 3.25 (BAMO) as a multiferroic matrix and well dispersed plasmonic Au nanoparticles (NPs) and demonstrate that the Au nanoparticle morphology and the nanocomposite properties can be effectively tuned. Specifically, the Au particle size can be tuned from 6.82 nm to 31.59 nm and the 6.82 nm one presents the optimum ferroelectric and ferromagnetic properties and plasmonic properties. Besides the room temperature multiferroic properties, the BAMO-Au nanocomposite system presents other unique functionalities including localized surface plasmon resonance (LSPR), hyperbolicity in the visible region, and magneto-optical coupling, which can all be effectively tailored through morphology tuning. This study demonstrates the feasibility of coupling single phase multiferroic oxides with plasmonic metals for complex nanocomposite designs towards optically switchable spintronics and other memory devices. 
    more » « less
  5. Abstract Plasmonic metal nanostructures can simultaneously scatter and absorb light, with resonance wavelength and strength depending on their morphology and composition. This work demonstrates that unique dichroic effects and high‐contrast colour‐switching can be achieved by leveraging the resonant scattering and absorption of light by plasmonic nanostructures and the specular reflection of the resulting transmitted light. Using core/shell nanostructures comprising a metal core and a dielectric shell, we show that their spray coating on reflective substrates produces dichroic films that can display colour switching at different viewing angles. The high‐contrast colour switching, high flexibility in designing multicolour patterns, and convenience for large‐scale production promise their wide range of applications, including anticounterfeiting, mechanochromic sensing, colour display, and printing. 
    more » « less