skip to main content


Title: Tunable physical properties in Bi-based layered supercell multiferroics embedded with Au nanoparticles
Multiferroic materials are an interesting functional material family combining two ferroic orderings, e.g. , ferroelectric and ferromagnetic orderings, or ferroelectric and antiferromagnetic orderings, and find various device applications, such as spintronics, multiferroic tunnel junctions, etc. Coupling multiferroic materials with plasmonic nanostructures offers great potential for optical-based switching in these devices. Here, we report a novel nanocomposite system consisting of layered Bi 1.25 AlMnO 3.25 (BAMO) as a multiferroic matrix and well dispersed plasmonic Au nanoparticles (NPs) and demonstrate that the Au nanoparticle morphology and the nanocomposite properties can be effectively tuned. Specifically, the Au particle size can be tuned from 6.82 nm to 31.59 nm and the 6.82 nm one presents the optimum ferroelectric and ferromagnetic properties and plasmonic properties. Besides the room temperature multiferroic properties, the BAMO-Au nanocomposite system presents other unique functionalities including localized surface plasmon resonance (LSPR), hyperbolicity in the visible region, and magneto-optical coupling, which can all be effectively tailored through morphology tuning. This study demonstrates the feasibility of coupling single phase multiferroic oxides with plasmonic metals for complex nanocomposite designs towards optically switchable spintronics and other memory devices.  more » « less
Award ID(s):
2016453 1565822 1809520
NSF-PAR ID:
10341597
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale Advances
Volume:
4
Issue:
14
ISSN:
2516-0230
Page Range / eLocation ID:
3054 to 3064
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oxide-metal-based hybrid materials have gained great research interest in recent years owing to their potential for multifunctionality, property coupling, and tunability. Specifically, oxide-metal hybrid materials in a vertically aligned nanocomposite (VAN) form could produce pronounced anisotropic physical properties, e.g. , hyperbolic optical properties. Herein, self-assembled HfO 2 -Au nanocomposites with ultra-fine vertically aligned Au nanopillars (as fine as 3 nm in diameter) embedded in a HfO 2 matrix were fabricated using a one-step self-assembly process. The film crystallinity and pillar uniformity can be obviously improved by adding an ultra-thin TiN-Au buffer layer during the growth. The HfO 2 -Au hybrid VAN films show an obvious plasmonic resonance at 480 nm, which is much lower than the typical plasmonic resonance wavelength of Au nanostructures, and is attributed to the well-aligned ultra-fine Au nanopillars. Coupled with the broad hyperbolic dispersion ranging from 1050 nm to 1800 nm in wavelength, and unique dielectric HfO 2 , this nanoscale hybrid plasmonic metamaterial presents strong potential for the design of future integrated optical and electronic switching devices. 
    more » « less
  2. Two-dimensional (2D) materials with robust ferromagnetic behavior have attracted great interest because of their potential applications in next-generation nanoelectronic devices. Aside from graphene and transition metal dichalcogenides, Bi-based layered oxide materials are a group of prospective candidates due to their superior room-temperature multiferroic response. Here, an ultrathin Bi 3 Fe 2 Mn 2 O 10+ δ layered supercell (BFMO322 LS) structure was deposited on an LaAlO 3 (LAO) (001) substrate using pulsed laser deposition. Microstructural analysis suggests that a layered supercell (LS) structure consisting of two-layer-thick Bi–O slabs and two-layer-thick Mn/Fe–O octahedra slabs was formed on top of the pseudo-perovskite interlayer (IL). A robust saturation magnetization value of 129 and 96 emu cm −3 is achieved in a 12.3 nm thick film in the in-plane (IP) and out-of-plane (OP) directions, respectively. The ferromagnetism, dielectric permittivity, and optical bandgap of the ultrathin BFMO films can be effectively tuned by thickness and morphology variation. In addition, the anisotropy of all ultrathin BFMO films switches from OP dominating to IP dominating as the thickness increases. This study demonstrates the ultrathin BFMO film with tunable multifunctionalities as a promising candidate for novel integrated spintronic devices. 
    more » « less
  3. Nanocomposite thin film materials present great opportunities in coupling materials and functionalities in unique nanostructures including nanoparticles-in-matrix, vertically aligned nanocomposites (VANs), and nanolayers. Interestingly the nanocomposites processed through a non-equilibrium processing method, e.g., pulsed laser deposition (PLD), often possess unique metastable phases and microstructures that could not achieve using equilibrium techniques, and thus lead to novel physical properties. In this work, a unique three-phase system composed of BaTiO3 (BTO), with two immiscible metals, Au and Fe, is demonstrated. By adjusting the deposition laser frequency from 2 Hz to 10 Hz, the phase and morphology of Au and Fe nanoparticles in BTO matrix vary from separated Au and Fe nanoparticles to well-mixed Au-Fe alloy pillars. This is attributed to the non-equilibrium process of PLD and the limited diffusion under high laser frequency (e.g., 10 Hz). The magnetic and optical properties are effectively tuned based on the morphology variation. This work demonstrates the stabilization of non-equilibrium alloy structures in the VAN form and allows for the exploration of new non-equilibrium materials systems and their properties that could not be easily achieved through traditional equilibrium methods. 
    more » « less
  4. null (Ed.)
    Integration of highly anisotropic multiferroic thin films on silicon substrates is a critical step towards low-cost devices, especially high-speed and low-power consumption memories. In this work, an oxide–metal vertically aligned nanocomposite (VAN) platform has been used to successfully demonstrate self-assembled multiferroic BaTiO 3 –Fe (BTO–Fe) nanocomposite films with high structural anisotropy on Si substrates. The effects of various buffer layers on the crystallinity, microstructure, and physical properties of the BTO–Fe films have been explored. With an appropriate buffer layer design, e.g. SrTiO 3 /TiN bilayer buffer, the epitaxial quality of the BTO matrix and the anisotropy of the Fe nanopillars can be improved greatly, which in turn enhances the physical properties, including the ferromagnetic, ferroelectric, and optical response of the BTO–Fe thin films. This unique combination of properties integrated on Si offers a promising approach in the design of multifunctional nanocomposites for Si-based memories and optical devices. 
    more » « less
  5. Abstract

    Metamaterials have gained great research interest in recent years owing to their potential for property tunability, multifunctionality, and property coupling. As a new group of self‐assembled thin films, vertically aligned nanocomposite (VAN)‐based hybrid metamaterials have been demonstrated with significant anisotropic physical properties and a broad range of property tailorability, such as optical anisotropy, magnetic anisotropy, hyperbolic dispersion, and enhanced second harmonic generation properties. Herein, self‐assembled ZrO2‐Co nanocomposite films, with high epitaxial quality and ultra‐fine vertically aligned Co nanopillars (with an average diameter of ≈2 nm) embedded in a ZrO2matrix, are fabricated using a pulsed laser deposition (PLD) method. The Co pillar density can be effectively tuned by varying the Co concentration in the target, which results in tunable optical properties and magnetic properties. Specifically, a high saturation magnetization of 100 emu cm−3, strong out‐of‐plane magnetic anisotropy and tailorable magnetization properties are achieved via tuning the Co nanopillar density. Coupled with hyperbolic dispersion of dielectric constant from 950 to 1500 nm in wavelength, plasmonic Co metal nanopillars, and the unique dielectric ZrO2matrix, this new nanoscale hybrid metamaterial shows great potential for future integrated optical and magnetic device designs.

     
    more » « less