Abstract Linking morphology and function is critical to understanding the evolution of organismal shape. Performance landscapes, or performance surfaces, associate empirical functional performance data with a morphospace to assess how shape variation relates to functional variation. Performance surfaces for multiple functions also can be combined to understand the functional trade‐offs that affect the morphology of a particular structure across species. However, morphological performance surfaces usually require empirical determination of performance for a number of theoretical shapes that are evenly distributed throughout the morphospace. This process is time‐consuming, and is problematic for structures that are difficult to precisely manipulate.We sought to (a) understand the degree and pattern of sampling required to produce a reliable and nuanced performance surface and (b) investigate the possibility of building a surface using only naturally occurring morphologies. To do this, we subsampled a pre‐existing set of turtle shell performance surfaces in four different ways: first, uniform subsampling of theoretical morphologies across the surface; second, random subsampling of theoretical morphologies across the surface; third, a combination uniform/random subsampling method called close‐pairs sampling and fourth, subsampling only points on the surface known to correspond to a naturally occurring turtle shell morphology. Each subset was interpolated with ordinary Kriging to produce a new performance surface for comparison to the original.We found that using a fraction of the theoretical morphologies examined in the original study (half as many or fewer) was sufficient to produce a performance surface bearing close resemblance to the original (Pearson correlation ≥0.90); close‐pairs sampling dramatically increased the power of small sample sizes. We also discovered that only sampling points on the surface corresponding to naturally occurring morphologies produced an accurate surface, but results were better when individual specimens, rather than species averages, were used.Our findings demonstrate the viability of using performance surfaces to understand the evolution of complex morphologies for which theoretical shape modelling is difficult or computationally burdensome. Both lower levels of carefully configured sampling throughout the theoretical morphospace, and development of performance surfaces using only data from naturally occurring morphologies, are acceptable alternatives to the dense theoretical shape sampling employed in previous studies.
more »
« less
Performance Surface Analysis Identifies Consistent Functional Patterns across 10 Morphologically Divergent Terrestrial Turtle Lineages
Abstract Newly-developed methods for utilizing performance surfaces—multivariate representations of the relationship between phenotype and functional performance—allow researchers to test hypotheses about adaptive landscapes and evolutionary diversification with explicit attention to functional factors. Here, information from performance surfaces of three turtle shell functions—shell strength, hydrodynamics, and self-righting—is used to test the hypothesis that turtle lineages transitioning from aquatic to terrestrial habitats show patterns of shell shape evolution consistent with decreased importance of hydrodynamic performance. Turtle shells are excellent model systems for evolutionary functional analysis. The evolution of terrestriality is an interesting test case for the efficacy of these methods because terrestrial turtles do not show a straightforward pattern of morphological convergence in shell shape: many terrestrial lineages show increased shell height, typically assumed to decrease hydrodynamic performance, but there are also several lineages where the evolution of terrestriality was accompanied by shell flattening. Performance surface analyses allow exploration of these complex patterns and explicit quantitative analysis of the functional implications of changes in shell shape. Ten lineages were examined. Nearly all terrestrial lineages, including those which experienced decreased shell height, are associated with morphological changes consistent with a decrease in the importance of shell hydrodynamics. This implies a common selective pattern across lineages showing divergent morphological patterns. Performance studies such as these hold great potential for integrating adaptive and performance data in macroevolutionary studies.
more »
« less
- Award ID(s):
- 1832822
- PAR ID:
- 10119933
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 59
- Issue:
- 2
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- p. 346-357
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The early diversification of tetrapods into terrestrial environments involved adaptations of their locomotor apparatus that allowed for weight support and propulsion on heterogeneous surfaces. Many lineages subsequently returned to the water, while others conquered the aerial environment, further diversifying under the physical constraints of locomoting through continuous fluid media. While many studies have explored the relationship between locomotion in continuous fluids and body mass, none have focused on how continuous fluid media have impacted the macroevolutionary patterns of limb shape diversity.We investigated whether mammals that left terrestrial environments to use air and water as their main locomotor environment experienced constraints on the morphological evolution of their forelimb, assessing their degree of morphological disparity and convergence. We gathered a comprehensive sample of more than 800 species that cover the extant family‐level diversity of mammals, using linear measurements of the forelimb skeleton to determine its shape and size.Among mammals, fully aquatic groups have the most disparate forelimb shapes, possibly due to the many different functional roles performed by flippers or the relaxation of constraints on within‐flipper bone proportions. Air‐based locomotion, in contrast, is linked to restricted forelimb shape diversity. Bats and gliding mammals exhibit similar morphological patterns that have resulted in partial phenotypic convergence, mostly involving the elongation of the proximal forelimb segments.Thus, whereas aquatic locomotion drives forelimb shape diversification, aerial locomotion constrains forelimb diversity. These results demonstrate that locomotion in continuous fluid media can either facilitate or limit morphological diversity and more broadly that locomotor environments have fostered the morphological and functional evolution of mammalian forelimbs. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract AimHumans are unintentionally affecting the evolution of fishery species directly through exploitation and indirectly by altering climate. We aim to test for a relationship between biogeographic patterns in the shell phenotypes of an over‐exploited shellfish and the presence of humans to identify human‐mediated adaptive trade‐offs. The implications of these trade‐offs are discussed with respect to the sustainability of the fishery. TaxonThe endemic Hawaiian intertidal limpet, ‘opihi makaiauli (Patellagastropoda, Nacellidae, Cellana exarata) MethodsWe surveyed phenotypic characters associated with temperature and predation avoidance across the entire species range and tested for differences in the relationship between these characters and latitude, on islands with and without humans. ResultsAmong all limpets surveyed, there was a bimodal distribution in shell colour (light, dark) and a parapatric pattern of shell coloration across the archipelago with lighter shells being prevalent on the uninhabited islands and darker, more camouflaged shells being prevalent on the inhabited islands. On the cooler, uninhabited islands, all morphometric characters associated with thermal avoidance (surface area, height and doming) increased with decreasing latitude. On the hotter, inhabited islands, however, shells were flatter, less variable and less adapted for avoiding thermal stress than predation. Main ConclusionsThe biogeographic patterns in shell phenotype and previous genetic studies suggest that the population is beginning to bifurcate in response to disruptive and directional selection as well as geographic isolation between the islands with and without humans. Decreased phenotypic and genetic diversity on the inhabited islands despite much larger populations of ‘opihi suggests a prominent historical bottleneck. The prevalence of maladaptive dark, flat phenotypes for thermal avoidance on the inhabited islands suggests that predation is a stronger selective force, driving adaptive trade‐offs in shape and colour. We propose that this is likely a case of fisheries‐induced evolution and a millennium of harvesting is the most likely selective pressure driving the observed biogeographic patterns in shell morphology. The flatter, darker shells will allow body temperatures to rise higher in direct sunlight, therefore we hypothesize that the thermal niche of ‘opihi is narrower on inhabited islands and will continue to narrow as Earth warms.more » « less
-
Adaptive radiations are characterized by an increase in species and/or phenotypic diversity as organisms fill open ecological niches. Often, the putative adaptive radiation has been studied without explicit comparison to the patterns and rates of evolution of closely related clades, leaving open the question whether notable changes in evolutionary process indeed occurred at the origin of the group. Anolis lizards are an oft-used model for investigating the tempo and mode of adaptive radiations. Most of the prior research on the diversification of Anolis morphology has focused on the post-cranium because of its significance towards subdivision of the arboreal habitat. But the remarkable diversity in head shape in anoles has not been as thoroughly investigated. It remains unknown whether the tempo or mode of head shape diversification changed as anoles diversified. We performed geometric morphometric analysis of skull shape across a sample of 12 Iguanian families (110 species), including anoles. Anolis lizards occupy a unique area and a wider region of morphological space compared to the 11 other families examined. We did not find a difference in the evolutionary rate of head shape diversification between anoles and their relatives. Rather, the extraordinary amount of skull diversity arose through a distinct mode of evolution; anoles moved into novel regions by relatively large morphological transitions across morphological space compared to their relatives. Our results demonstrate that traits not directly tied to the adaptive shift of a lineage into unique ecological spaces may undergo exceptional patterns of change as the clade diversifies.more » « less
-
Adaptive radiations are bursts in biodiversity that generate new evolutionary lineages and phenotypes. However, because they typically occur over millions of years, it is unclear how their macroevolutionary dynamics vary through time and among groups of organisms. Phyllostomid bats radiated extensively for diverse diets-from insects to vertebrates, fruit, nectar, and blood-and we use their molars as a model system to examine the dynamics of adaptive radiations. Three-dimensional shape analyses of lower molars of Noctilionoidea (Phyllostomidae and close relatives) indicate that different diet groups exhibit distinct morphotypes. Comparative analyses further reveal that phyllostomids are a striking example of a hierarchical radiation; phyllostomids' initial, higher-level diversification involved an "early burst" in molar morphological disparity as lineages invaded new diet-affiliated adaptive zones, followed by subsequent lower-level diversifications within adaptive zones involving less dramatic morphological changes. We posit that strong selective pressures related to initial shifts to derived diets may have freed molars from morpho-functional constraints associated with the ancestral molar morphotype. Then, lineages with derived diets (frugivores and nectarivores) diversified within broad adaptive zones, likely reflecting finer-scale niche partitioning. Importantly, the observed early burst pattern is only evident when examining molar traits that are strongly linked to diet, highlighting the value of ecomorphological traits in comparative studies. Our results support the hypothesis that adaptive radiations are commonly hierarchical and involve different tempos and modes at different phylogenetic levels, with early bursts being more common at higher levels.more » « less
An official website of the United States government
