skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The hierarchical radiation of phyllostomid bats as revealed by adaptive molar morphology
Adaptive radiations are bursts in biodiversity that generate new evolutionary lineages and phenotypes. However, because they typically occur over millions of years, it is unclear how their macroevolutionary dynamics vary through time and among groups of organisms. Phyllostomid bats radiated extensively for diverse diets-from insects to vertebrates, fruit, nectar, and blood-and we use their molars as a model system to examine the dynamics of adaptive radiations. Three-dimensional shape analyses of lower molars of Noctilionoidea (Phyllostomidae and close relatives) indicate that different diet groups exhibit distinct morphotypes. Comparative analyses further reveal that phyllostomids are a striking example of a hierarchical radiation; phyllostomids' initial, higher-level diversification involved an "early burst" in molar morphological disparity as lineages invaded new diet-affiliated adaptive zones, followed by subsequent lower-level diversifications within adaptive zones involving less dramatic morphological changes. We posit that strong selective pressures related to initial shifts to derived diets may have freed molars from morpho-functional constraints associated with the ancestral molar morphotype. Then, lineages with derived diets (frugivores and nectarivores) diversified within broad adaptive zones, likely reflecting finer-scale niche partitioning. Importantly, the observed early burst pattern is only evident when examining molar traits that are strongly linked to diet, highlighting the value of ecomorphological traits in comparative studies. Our results support the hypothesis that adaptive radiations are commonly hierarchical and involve different tempos and modes at different phylogenetic levels, with early bursts being more common at higher levels.  more » « less
Award ID(s):
2017803 2017738
PAR ID:
10507698
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Current Biology
Date Published:
Journal Name:
Current Biology
Volume:
34
Issue:
6
ISSN:
0960-9822
Page Range / eLocation ID:
1284 to 1294.e3
Subject(s) / Keyword(s):
Noctilionoidea adaptive landscape adaptive radiation comparative methods early burst evolutionary models functional morphology macroevolution molars morphological disparity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As herbivorous, diphyodont mammals with relatively low-crowned molars, primates experience changes in dental function during their lifetimes as teeth become progressively worn. Maintaining tooth function with wear is thought to pose a particular challenge for folivorous primates whose diets emphasize molar shearing actions. Recent studies using dental topographic methods suggest that certain primate folivores have molar morphology that maintains or increases functional shearing surfaces with tooth wear (‘dental sculpting’). Evidence for this phenomenon has been found in folivorous but not frugivorous New World monkeys, supporting the hypothesis that dental sculpting is an adaptive trait linked to diet. This analysis extends these methods to two sympatric Old World monkeys from Sabah, Malaysia, possessing distinct diets and dental morphologies: the folivorous colobine Trachypithecus cristatus (n=25) and the more frugivorous cercopithecine Macaca fascicularis (n=22). For each species, 3D shear crest lengths and four dental topographic variables (relief index, slope, angularity, and Dirichlet Normal Energy [DNE]) were measured from variably worn lower second molars. Preliminary results indicate that for any given degree of wear, Trachypithecus has longer shear crest lengths and higher relief, slope, angularity, and DNE than Macaca. The two species exhibit different patterns and degrees of change in topography and shearing crest lengths across the wear series. However, these changes do not always match expectations based on their respective diets. Correlations between 3D shear crest lengths and other dental topographic measurements suggests that the type of metric used to assess shearing potential may affect whether or not dental sculpting is detected. 
    more » « less
  2. Abstract Rates of phenotypic evolution vary markedly across the tree of life, from the accelerated evolution apparent in adaptive radiations to the remarkable evolutionary stasis exhibited by so-called “living fossils.” Such rate variation has important consequences for large-scale evolutionary dynamics, generating vast disparities in phenotypic diversity across space, time, and taxa. Despite this, most methods for estimating trait evolution rates assume rates vary deterministically with respect to some variable of interest or change infrequently during a clade’s history. These assumptions may cause underfitting of trait evolution models and mislead hypothesis testing. Here, we develop a new trait evolution model that allows rates to vary gradually and stochastically across a clade. Further, we extend this model to accommodate generally decreasing or increasing rates over time, allowing for flexible modeling of “early/late bursts” of trait evolution. We implement a Bayesian method, termed “evolving rates” (evorates for short), to efficiently fit this model to comparative data. Through simulation, we demonstrate that evorates can reliably infer both how and in which lineages trait evolution rates varied during a clade’s history. We apply this method to body size evolution in cetaceans, recovering substantial support for an overall slowdown in body size evolution over time with recent bursts among some oceanic dolphins and relative stasis among beaked whales of the genus Mesoplodon. These results unify and expand on previous research, demonstrating the empirical utility of evorates. [cetacea; macroevolution; comparative methods; phenotypic diversity; disparity; early burst; late burst] 
    more » « less
  3. Recent adaptive radiations provide experimental opportunities to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetic analyses as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, charr species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotskoe represent the most extensive radiation described for the genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages within the clade. We find that changes in genes associated with thyroid signaling and craniofacial development provided a foundational shift in evolution to the lake. The thyroid axis is further implicated in subsequent lineage partitioning events. These results delineate a genetic scenario for the diversification of specialized lineages and highlight a common axis of change biasing the generation of specific forms during adaptive radiation. 
    more » « less
  4. Abstract Developmental plasticity can allow the exploitation of alternative diets. While such flexibility during early life is often adaptive, it can leave a legacy in later life that alters the overall health and fitness of an individual. Species of the spadefoot toad genusSpeaare uniquely poised to address such carryover effects because their larvae can consume drastically different diets: their ancestral diet of detritus or a derived shrimp diet. Here, we useSpeabombifronsto assess the effects of developmental plasticity in response to larval diet type and nutritional stress on juvenile behaviors and stress axis reactivity. We find that, in an open‐field assay, juveniles fed shrimp as larvae have longer latencies to move, avoid prey items more often, and have poorer prey‐capture abilities. While juveniles fed shrimp as larvae are more exploratory, this effect disappears if they also experienced a temporary nutritional stressor during early life. The larval shrimp diet additionally impairs juvenile jumping performance. Finally, larvae that were fed shrimp under normal nutritional conditions produce juveniles with higher overall glucocorticoid levels, and larvae that were fed shrimp and experienced a temporary nutritional stressor produce juveniles with higher stress‐induced glucocorticoid levels. Thus, while it has been demonstrated that consuming the novel, alternative diet can be adaptive for larvae in nature, doing so has marked effects on juvenile phenotypes that may recalibrate an individual's overall fitness. Given that organisms often utilize diverse diets in nature, our study underscores the importance of considering how diet type interacts with early‐life nutritional adversity to influence subsequent life stages. 
    more » « less
  5. Rapid adaptive radiation poses a distinct question apart from speciation and adaptation: what happens after one speciation event? That is, how are some lineages able to continue speciating through a rapid burst? This question connects global macroevolutionary patterns to microevolutionary processes. Here we review major features of rapid radiations in nature and their mismatch with theoretical models and what is currently known about speciation mechanisms. Rapid radiations occur on three major diversification axes – species richness, phenotypic disparity, and ecological diversity – with exceptional outliers on each axis. The paradox is that the hallmark early stage of adaptive radiation, a rapid burst of speciation and niche diversification, is contradicted by most existing speciation models which instead predict continuously decelerating speciation rates and niche subdivision through time. Furthermore, while speciation mechanisms such as magic traits, phenotype matching, and physical linkage of co-adapted alleles promote speciation, it is often not discussed how these mechanisms could promote multiple speciation events in rapid succession. Additional mechanisms beyond ecological opportunity are needed to understand how rapid radiations occur. We review the evidence for five emerging theories: 1) the ‘transporter’ hypothesis: introgression and the ancient origins of adaptive alleles, 2) the ‘signal complexity’ hypothesis: the dimensionality of sexual traits, 3) the connectivity of fitness landscapes, 4) ‘diversity begets diversity’, and 5) flexible stem/‘plasticity first’. We propose new questions and predictions to guide future work on the mechanisms underlying the rare origins of rapid radiation. 
    more » « less