skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Implementing and evaluating a Gaussian mixture framework for identifying gene function from TnSeq data
The rapid acceleration of microbial genome sequencing increases opportunities to understand bacterial gene function. Unfortunately, only a small proportion of genes have been studied. Recently, TnSeq has been proposed as a cost-effective, highly reliable approach to predict gene functions as a response to changes in a cell’s fitness before-after genomic changes. However, major questions remain about how to best determine whether an observed quantitative change in fitness represents a meaningful change. To address the limitation, we develop a Gaussian mixture model framework for classifying gene function from TnSeq experiments. In order to implement the mixture model, we present the Expectation-Maximization algorithm and a hierarchical Bayesian model sampled using Stan’s Hamiltonian Monte-Carlo sampler. We compare these implementations against the frequentist method used in current TnSeq literature. From simulations and real data produced by E.coli TnSeq experiments, we show that the Bayesian implementation of the Gaussian mixture framework provides the most consistent classification results.  more » « less
Award ID(s):
1716285
PAR ID:
10120127
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Pacific symposium on biocomputing ...
Volume:
24
ISSN:
2335-6936
Page Range / eLocation ID:
172-183
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid acceleration of microbial genome sequencing increases opportunities to understand bacterial gene function. Unfortunately, only a small proportion of genes have been studied. Recently, TnSeq has been proposed as a cost-effective, highly reliable approach to predict gene functions as a response to changes in a cell’s fitness before-after genomic changes. However, major questions remain about how to best determine whether an observed quantitative change in fitness represents a meaningful change. To address the limitation, we develop a Gaussian mixture model framework for classifying gene function from TnSeq experiments. In order to implement the mixture model, we present the Expectation-Maximization algorithm and a hierarchical Bayesian model sampled using Stan’s Hamiltonian Monte-Carlo sampler. We compare these implementations against the frequentist method used in current TnSeq literature. From simulations and real data produced by E.coli TnSeq experiments, we show that the Bayesian implementation of the Gaussian mixture framework provides the most consistent classification results. 
    more » « less
  2. Segata, Nicola (Ed.)
    The understanding of bacterial gene function has been greatly enhanced by recent advancements in the deep sequencing of microbial genomes. Transposon insertion sequencing methods combines next-generation sequencing techniques with transposon mutagenesis for the exploration of the essentiality of genes under different environmental conditions. We propose a model-based method that uses regularized negative binomial regression to estimate the change in transposon insertions attributable to gene-environment changes in this genetic interaction study without transformations or uniform normalization. An empirical Bayes model for estimating the local false discovery rate combines unique and total count information to test for genes that show a statistically significant change in transposon counts. When applied to RB-TnSeq (randomized barcode transposon sequencing) and Tn-seq (transposon sequencing) libraries made in strains of Caulobacter crescentus using both total and unique count data the model was able to identify a set of conditionally beneficial or conditionally detrimental genes for each target condition that shed light on their functions and roles during various stress conditions. 
    more » « less
  3. Humans can learn complex functional relationships between variables from small amounts of data. In doing so, they draw on prior expectations about the form of these relationships. In three experiments, we show that people learn to adjust these expectations through experience, learning about the likely forms of the functions they will encounter. Previous work has used Gaussian processes—a statistical framework that extends Bayesian nonparametric approaches to regression—to model human function learning. We build on this work, modeling the process of learning to learn functions as a form of hierarchical Bayesian inference about the Gaussian process hyperparameters. 
    more » « less
  4. Recent technology breakthroughs in spatially resolved transcriptomics (SRT) have enabled the comprehensive molecular characterization of cells whilst preserving their spatial and gene expression contexts. One of the fundamental questions in analyzing SRT data is the identification of spatially variable genes whose expressions display spatially correlated patterns. Existing approaches are built upon either the Gaussian process-based model, which relies onad hockernels, or the energy-based Ising model, which requires gene expression to be measured on a lattice grid. To overcome these potential limitations, we developed a generalized energy-based framework to model gene expression measured from imaging-based SRT platforms, accommodating the irregular spatial distribution of measured cells. Our Bayesian model applies a zero-inflated negative binomial mixture model to dichotomize the raw count data, reducing noise. Additionally, we incorporate a geostatistical mark interaction model with a generalized energy function, where the interaction parameter is used to identify the spatial pattern. Auxiliary variable MCMC algorithms were employed to sample from the posterior distribution with an intractable normalizing constant. We demonstrated the strength of our method on both simulated and real data. Our simulation study showed that our method captured various spatial patterns with high accuracy; moreover, analysis of a seqFISH dataset and a STARmap dataset established that our proposed method is able to identify genes with novel and strong spatial patterns. 
    more » « less
  5. Optimizing a black-box function that is expensive to evaluate emerges in a gamut of machine learning and artifcial intelligence applications including drug discovery, policy optimization in robotics, and hyperparameter tuning of learning models to list a few. Bayesian optimization (BO) provides a principled framework to fnd the global optimum of such functions using a limited number of function evaluations. BO relies on a statistical surrogate model to actively select new query points, that is typically captured by a Gaussian process (GP). Unlike most existing approaches that hinge on a single GP surrogate model with a pre-selected kernel function that may confne the expressiveness of the sought function especially under the limited evaluation budget, the present work puts forth a weighted ensemble of GPs as a surrogate model. Building on the advocated Gaussian mixture (GM) posterior, the EGP framework adapts to the most ftted surrogate model as data arrive on-the-fy, offering a richer function space. For the acquisition of next evaluation points, the EGP-based posterior is coupled with an adaptive expected improvement (EI) criterion to balance exploration and exploitation of the search space. Numerical tests on a set of benchmark synthetic functions and two robotic tasks, demonstrate the impressive benefts of the proposed approach. 
    more » « less