skip to main content


Title: Bayesian Optimization with Ensemble Learning Models and Adaptive Expected Improvement
Optimizing a black-box function that is expensive to evaluate emerges in a gamut of machine learning and artifcial intelligence applications including drug discovery, policy optimization in robotics, and hyperparameter tuning of learning models to list a few. Bayesian optimization (BO) provides a principled framework to fnd the global optimum of such functions using a limited number of function evaluations. BO relies on a statistical surrogate model to actively select new query points, that is typically captured by a Gaussian process (GP). Unlike most existing approaches that hinge on a single GP surrogate model with a pre-selected kernel function that may confne the expressiveness of the sought function especially under the limited evaluation budget, the present work puts forth a weighted ensemble of GPs as a surrogate model. Building on the advocated Gaussian mixture (GM) posterior, the EGP framework adapts to the most ftted surrogate model as data arrive on-the-fy, offering a richer function space. For the acquisition of next evaluation points, the EGP-based posterior is coupled with an adaptive expected improvement (EI) criterion to balance exploration and exploitation of the search space. Numerical tests on a set of benchmark synthetic functions and two robotic tasks, demonstrate the impressive benefts of the proposed approach.  more » « less
Award ID(s):
2220292 2212318 2126052 2128593
PAR ID:
10424911
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Acoustics, Speech, and Signal Processing
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bayesian optimization (BO) has well-documented merits for optimizing black-box functions with an expensive evaluation cost. Such functions emerge in applications as diverse as hyperparameter tuning, drug discovery, and robotics. BO hinges on a Bayesian surrogate model to sequentially select query points so as to balance exploration with exploitation of the search space. Most existing works rely on a single Gaussian process (GP) based surrogate model, where the kernel function form is typically preselected using domain knowledge. To bypass such a design process, this paper leverages an ensemble (E) of GPs to adaptively select the surrogate model fit on-the-fly, yielding a GP mixture posterior with enhanced expressiveness for the sought function. Acquisition of the next evaluation input using this EGP-based function posterior is then enabled by Thompson sampling (TS) that requires no additional design parameters. To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model. The novel EGP-TS readily accommodates parallel operation. To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret for both sequential and parallel settings. Tests on synthetic functions and real-world applications showcase the merits of the proposed method. 
    more » « less
  2. Optimizing expensive to evaluate black-box functions over an input space consisting of all permutations of d objects is an important problem with many real-world applications. For example, placement of functional blocks in hardware design to optimize performance via simulations. The overall goal is to minimize the number of function evaluations to find high-performing permutations. The key challenge in solving this problem using the Bayesian optimization (BO) framework is to trade-off the complexity of statistical model and tractability of acquisition function optimization. In this paper, we propose and evaluate two algorithms for BO over Permutation Spaces (BOPS). First, BOPS-T employs Gaussian process (GP) surrogate model with Kendall kernels and a Tractable acquisition function optimization approach to select the sequence of permutations for evaluation. Second, BOPS-H employs GP surrogate model with Mallow kernels and a Heuristic search approach to optimize the acquisition function. We theoretically analyze the performance of BOPS-T to show that their regret grows sub-linearly. Our experiments on multiple synthetic and real-world benchmarks show that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algorithm for combinatorial spaces. To drive future research on this important problem, we make new resources and real-world benchmarks available to the community. 
    more » « less
  3. Labeled data can be expensive to acquire in several application domains, including medical imaging, robotics, computer vision and wireless networks to list a few. To efficiently train machine learning models under such high labeling costs, active learning (AL) judiciously selects the most informative data instances to label on-the-fly. This active sampling process can benefit from a statistical function model, that is typically captured by a Gaussian process (GP) with well-documented merits especially in the regression task. While most GP-based AL approaches rely on a single kernel function, the present contribution advocates an ensemble of GP (EGP) models with weights adapted to the labeled data collected incrementally. Building on this novel EGP model, a suite of acquisition functions emerges based on the uncertainty and disagreement rules. An adaptively weighted ensemble of EGP-based acquisition functions is advocated to further robustify performance. Extensive tests on synthetic and real datasets in the regression task showcase the merits of the proposed EGP-based approaches with respect to the single GP-based AL alternatives. 
    more » « less
  4. Abstract

    Bayesian optimization (BO) has been leveraged for guiding autonomous and high-throughput experiments in materials science. However, few have evaluated the efficiency of BO across a broad range of experimental materials domains. In this work, we quantify the performance of BO with a collection of surrogate model and acquisition function pairs across five diverse experimental materials systems. By defining acceleration and enhancement metrics for materials optimization objectives, we find that surrogate models such as Gaussian Process (GP) with anisotropic kernels and Random Forest (RF) have comparable performance in BO, and both outperform the commonly used GP with isotropic kernels. GP with anisotropic kernels has demonstrated the most robustness, yet RF is a close alternative and warrants more consideration because it is free from distribution assumptions, has smaller time complexity, and requires less effort in initial hyperparameter selection. We also raise awareness about the benefits of using GP with anisotropic kernels in future materials optimization campaigns.

     
    more » « less
  5. We address uncertainty quantification for Gaussian processes (GPs) under misspecified priors, with an eye towards Bayesian Optimization (BO). GPs are widely used in BO because they easily enable exploration based on posterior uncertainty bands. However, this convenience comes at the cost of robustness: a typical function encountered in practice is unlikely to have been drawn from the data scientist’s prior, in which case uncertainty estimates can be misleading, and the resulting exploration can be suboptimal. We present a frequentist approach to GP/BO uncertainty quantification. We utilize the GP framework as a working model, but do not assume correctness of the prior. We instead construct a \emph{confidence sequence} (CS) for the unknown function using martingale techniques. There is a necessary cost to achieving robustness: if the prior was correct, posterior GP bands are narrower than our CS. Nevertheless, when the prior is wrong, our CS is statistically valid and empirically outperforms standard GP methods, in terms of both coverage and utility for BO. Additionally, we demonstrate that powered likelihoods provide robustness against model misspecification. 
    more » « less