skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal battery purchasing and charging strategy at electric vehicle battery swap stations
Award ID(s):
1634133
PAR ID:
10120244
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
European Journal of Operational Research
Volume:
279
Issue:
2
ISSN:
0377-2217
Page Range / eLocation ID:
524 to 539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As a promising lightweight multifunctional material, carbon fiber structural battery composites have great potentials to enable longer service life and operating distance for the rapidly increasing mobile electric technologies. While simultaneously carrying mechanical loads and storing electrical energy, the developed multifunctional composites can achieve “massless” energy storage and further extend to sensing and energy harvesting for self-powered structural health monitoring. However, it is still very challenging to predict the state-of-health of structural battery composites due to a lack of understanding of underlying coupled mechanical-electrochemical phenomena during operation. In this study, we first use a novel 3D printing method to fabricate and tailor microstructure of the multifunctional carbon fiber composites. With an optimal electrode layer thickness of 0.4 mm, the stable specific capacity at 1C reaches over 80% of the theoretical capacity of the electrode active materials (lithium iron phosphate) with an average energy density of 152 Wh/kg observed. The corresponding flexural modulus and flexural strength are 8.7 GPa and 69.6 MPa, respectively. The state-of-health of 3D printed structural battery composites under electrochemical cycling and external mechanical loadings are also investigated. The mechanical performance is not affected by the electrochemical charge-discharge processes. The structural battery composites under three-point bending testing show good capacity retention with rapid degradation of electrochemical performance observed near fracture point. The findings from this study not only provide insights for monitoring the state-of-health of structural battery but also show mechanical-electrochemical coupling as a potential way of self-powered structural health monitoring through the 3D printed multifunctional composites. 
    more » « less
  2. null (Ed.)
  3. Electric Aircraft have the potential to revolutionize short-distance air travel with lower operating costs and simplified maintenance. However, due to the long lead-time associated with procuring batteries and the maintenance challenges of replacing and repairing batteries in electric aircraft, there are still unanswered questions related to the true long-term operating costs of electric aircraft. This research examines using a load-sharing system in electric aircraft to optimally tune battery degradation in a multi-battery system such that the battery life of a single battery is extended. The active optimization of energy drawn from multiple battery packs means that each battery pack reaches its optimal replacement point at the same time; thereby simplifying the maintenance procedure and reducing cost. This work uses lithium iron phosphate batteries experimentally characterized and simulated in OpenModelica for a flight load profile. Adaptive agents control the load on the battery according to factors such as state of charge, and state of health, to respond to potential faults. The findings in this work show the potential for adaptive agents to selectively draw more power from a healthy battery to extend the lifespan of a degraded battery such that the remaining useful life of both batteries reaches zero at the same time. Simulations show that dual battery replacement can be facilitated using the proposed method when the in-service battery has a remaining useful life of greater than 0.5; assuming that the replacement battery it is paired with has a remaining useful life of 1.0. Limitations of the proposed method are discussed within this work. 
    more » « less