skip to main content


Title: Optimal battery purchasing and charging strategy at electric vehicle battery swap stations
Award ID(s):
1634133
NSF-PAR ID:
10120244
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
European Journal of Operational Research
Volume:
279
Issue:
2
ISSN:
0377-2217
Page Range / eLocation ID:
524 to 539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electric Aircraft have the potential to revolutionize short-distance air travel with lower operating costs and simplified maintenance. However, due to the long lead-time associated with procuring batteries and the maintenance challenges of replacing and repairing batteries in electric aircraft, there are still unanswered questions related to the true long-term operating costs of electric aircraft. This research examines using a load-sharing system in electric aircraft to optimally tune battery degradation in a multi-battery system such that the battery life of a single battery is extended. The active optimization of energy drawn from multiple battery packs means that each battery pack reaches its optimal replacement point at the same time; thereby simplifying the maintenance procedure and reducing cost. This work uses lithium iron phosphate batteries experimentally characterized and simulated in OpenModelica for a flight load profile. Adaptive agents control the load on the battery according to factors such as state of charge, and state of health, to respond to potential faults. The findings in this work show the potential for adaptive agents to selectively draw more power from a healthy battery to extend the lifespan of a degraded battery such that the remaining useful life of both batteries reaches zero at the same time. Simulations show that dual battery replacement can be facilitated using the proposed method when the in-service battery has a remaining useful life of greater than 0.5; assuming that the replacement battery it is paired with has a remaining useful life of 1.0. Limitations of the proposed method are discussed within this work. 
    more » « less
  2. This paper proposes a methodology to increase the lifetime of the central battery energy storage system (CBESS) in an islanded building-level DC microgrid (MG) and enhance the voltage quality of the system by employing the supercapacitor (SC) of electric vehicles (EVs) that utilize battery-SC hybrid energy storage systems. To this end, an adaptive filtration-based (FB) current-sharing strategy is proposed in the voltage feedback control loop of the MG that smooths the CBESS current to increase its lifetime by allocating a portion of the high-frequency current variations to the EV charger. The bandwidth of this filter is adjusted using a data-driven algorithm to guarantee that only the EV's SC absorbs the high-frequency current variations, thereby enabling the EV's battery energy storage system (BESS) to follow its standard constant current-constant voltage (CC-CV) charging profile. Therefore, the EV's SC can coordinate with the CBESS without impacting the charging profile of the EV's BESS. Also, a small-signal stability analysis is provided indicating that the proposed approach improves the marginal voltage stability of the DC MG leading to better transient response and higher voltage quality. Finally, the performance of the proposed EV charging is validated using MATLAB/Simulink and hardware-in-the-loop (HIL) testing. 
    more » « less
  3. This paper demonstrates a novel, compact-sized hardware-in-the-loop system, and its verification using machine learning and artificial intelligence features in battery controls. Conventionally, a battery management system involves algorithm development for battery modeling, estimation, and control. These tasks are typically validated by running the battery tester open-loop, i.e., the tester equipment executes the pre-defined experimental protocols line by line. Additional equipment is required to make the testing closed-loop, but the integration is typically not straightforward. To improve flexibility and accessibility for battery management, this work proposes a low-cost highly reliable closed-loop charger and discharger. We first focus on the electronic circuit design for battery testing systems to maximize the applied current accuracy and precision. After functional verification, we further investigate applications for closed-loop battery management systems. In particular, we extend the proposed architecture into the learning-based control design, which is a feedback controller. We utilize reinforcement learning techniques to highlight the benefits of closed-loop controls. As an example, we compare this learning-based control strategy with a conventional battery charging control. The experimental results demonstrate that the proposed experimental design is able to handle the learning-based controller and achieve a more reliable and safer charging protocol driven by artificial intelligence. 
    more » « less