skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Third-order structure functions for isotropic turbulence with bidirectional energy transfer
We derive and test a new heuristic theory for third-order structure functions that resolves the forcing scale in the scenario of simultaneous spectral energy transfer to both small and large scales, which can occur naturally, for example, in rotating stratified turbulence or magnetohydrodynamical (MHD) turbulence. The theory has three parameters – namely the upscale/downscale energy transfer rates and the forcing scale – and it includes the classic inertial-range theories as local limits. When applied to measured data, our global-in-scale theory can deduce the energy transfer rates using the full range of data, therefore it has broader applications compared with the local theories, especially in situations where the data is imperfect. In addition, because of the resolution of forcing scales, the new theory can detect the scales of energy input, which was impossible before. We test our new theory with a two-dimensional simulation of MHD turbulence.  more » « less
Award ID(s):
1813891
PAR ID:
10120397
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
877
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetized turbulence is ubiquitous in many astrophysical and terrestrial plasmas but no universal theory exists. Even the detailed energy dynamics in magnetohydrodynamic (MHD) turbulence are still not well understood. We present a suite of subsonic, super-Alfvénic, high plasma beta MHD turbulence simulations that only vary in their dynamical range, i.e., in their separation between the large-scale forcing and dissipation scales, and their dissipation mechanism (implicit large eddy simulation, ILES, and direct numerical simulation (DNS)). Using an energy transfer analysis framework we calculate the effective numerical viscosities and resistivities, and demonstrate that all ILES calculations of MHD turbulence are resolved and correspond to an equivalent visco-resistive MHD turbulence calculation. Increasing the number of grid points used in an ILES corresponds to lowering the dissipation coefficients, i.e., larger (kinetic and magnetic) Reynolds numbers for a constant forcing scale. Independently, we use this same framework to demonstrate that—contrary to hydrodynamic turbulence—the cross-scale energy fluxes are not constant in MHD turbulence. This applies both to different mediators (such as cascade processes or magnetic tension) for a given dynamical range as well as to a dependence on the dynamical range itself, which determines the physical properties of the flow. We do not observe any indication of convergence even at the highest resolution (largest Reynolds numbers) simulation at 20483cells, calling into question whether an asymptotic regime in MHD turbulence exists, and, if so, what it looks like. 
    more » « less
  2. null (Ed.)
    In inertial-range turbulence, structure functions can diagnose transfer or dissipation rates of energy and enstrophy, which are difficult to calculate directly in flows with complex geometry or sparse sampling. However, existing relations between third-order structure functions and these rates only apply under isotropic conditions. We propose new relations to diagnose energy and enstrophy dissipation rates in anisotropic two-dimensional (2-D) turbulence. These relations use second-order advective structure functions that depend on spatial increments of vorticity, velocity, and their advection. Numerical simulations of forced-dissipative anisotropic 2-D turbulence are used to compare new and existing relations against model-diagnosed dissipation rates of energy and enstrophy. These simulations permit a dual cascade where forcing is applied at an intermediate scale, energy is dissipated at large scales, and enstrophy is dissipated at small scales. New relations to estimate energy and enstrophy dissipation rates show improvement over existing methods through increased accuracy, insensitivity to sampling direction, and lower temporal and spatial variability. These benefits of advective structure functions are present under weakly anisotropic conditions, and increase with the flow anisotropy as third-order structure functions become increasingly inappropriate. Several of the structure functions also show promise for diagnosing the forcing scale of 2-D turbulence. Velocity-based advective structure functions show particular promise as they can diagnose both enstrophy and energy cascade rates, and are robust to changes in the effective resolution of local derivatives. Some existing and future datasets that are amenable to advective structure function analysis are discussed. 
    more » « less
  3. ABSTRACT In this work, we find empirical evidence that the scale-dependent statistical properties of solar wind and magnetohydrodynamic (MHD) turbulence can be described in terms of a family of parametric probability distribution functions (PDFs) known as Normal Inverse Gaussian (NIG). Understanding these PDFs is one of the most important goals in turbulence theory, as they are inherently connected to the intermittent properties of solar wind turbulence. We investigate the properties of PDFs of Elsasser increments based on a large statistical sample from solar wind observations and high-resolution numerical simulations of MHD turbulence. In order to measure the PDFs and their corresponding properties, three experiments are presented: fast and slow solar wind for experimental data and a simulation of reduced MHD (RMHD) turbulence. Conditional statistics on a 23-yr-long sample of WIND data near 1 au and high-resolution pseudo-spectral simulation of steadily driven RMHD turbulence on a $2048^3$ mesh are used to construct scale-dependent PDFs. The empirical PDFs are fitted to NIG distributions, which depend on four free parameters. Our analysis shows that NIG distributions accurately capture the evolution of the PDFs, with scale-dependent parameters, from large scales characterized by a Gaussian distribution, turning to exponential tails within the inertial range and stretched exponentials at dissipative scales. We also show that empirically-measured NIG parameters exhibit well-defined scaling properties that are similar across the three empirical data sets, which may be indicative of universal behaviour. 
    more » « less
  4. Pressure anisotropy can strongly influence the dynamics of weakly collisional, high-beta plasmas, but its effects are missed by standard magnetohydrodynamics (MHD). Small changes to the magnetic-field strength generate large pressure-anisotropy forces, heating the plasma, driving instabilities and rearranging flows, even on scales far above the particles’ gyroscales where kinetic effects are traditionally considered most important. Here, we study the influence of pressure anisotropy on turbulent plasmas threaded by a mean magnetic field (Alfvénic turbulence). Extending previous results that were concerned with Braginskii MHD, we consider a wide range of regimes and parameters using a simplified fluid model based on drift kinetics with heat fluxes calculated using a Landau-fluid closure. We show that viscous (pressure-anisotropy) heating dissipates between a quarter (in collisionless regimes) and half (in collisional regimes) of the turbulent-cascade power injected at large scales; this does not depend strongly on either plasma beta or the ion-to-electron temperature ratio. This will in turn influence the plasma's thermodynamics by regulating energy partition between different dissipation channels (e.g. electron and ion heat). Due to the pressure anisotropy's rapid dynamic feedback onto the flows that create it – an effect we term ‘magneto-immutability’ – the viscous heating is confined to a narrow range of scales near the forcing scale, supporting a nearly conservative, MHD-like inertial-range cascade, via which the rest of the energy is transferred to small scales. Despite the simplified model, our results – including the viscous heating rate, distributions and turbulent spectra – compare favourably with recent hybrid-kinetic simulations. This is promising for the more general use of extended-fluid (or even MHD) approaches to model weakly collisional plasmas such as the intracluster medium, hot accretion flows and the solar wind. 
    more » « less
  5. Abstract The transport of waves and turbulence beyond the photosphere is central to the coronal heating problem. Turbulence in the quiet solar corona has been modeled on the basis of the nearly incompressible magnetohydrodynamic (NI MHD) theory to describe the transport of low-frequency turbulence in open magnetic field regions. It describes the evolution of the coupled majority quasi-2D and minority slab component, driven by the magnetic carpet and advected by a subsonic, sub-Alfvénic flow from the lower corona. In this paper, we couple the NI MHD turbulence transport model with an MHD model of the solar corona to study the heating problem in a coronal loop. In a realistic benchmark coronal loop problem, we find that a loop can be heated to ∼1.5 million K by transport and dissipation of MHD turbulence described by the NI MHD model. We also find that the majority 2D component is as important as the minority slab component in the heating of the coronal loop. We compare our coupled MHD/NI MHD model results with a reduced MHD (RMHD) model. An important distinction between these models is that RMHD solves for small-scale velocity and magnetic field fluctuations and obtains the actual viscous/resistive dissipation associated with their evolution whereas NI MHD evolves scalar moments of the fluctuating velocity and magnetic fields and approximates dissipation using an MHD turbulence phenomenology. Despite the basic differences between the models, their simulation results match remarkably well, yielding almost identical heating rates inside the corona. 
    more » « less