skip to main content

Title: Advective structure functions in anisotropic two-dimensional turbulence
In inertial-range turbulence, structure functions can diagnose transfer or dissipation rates of energy and enstrophy, which are difficult to calculate directly in flows with complex geometry or sparse sampling. However, existing relations between third-order structure functions and these rates only apply under isotropic conditions. We propose new relations to diagnose energy and enstrophy dissipation rates in anisotropic two-dimensional (2-D) turbulence. These relations use second-order advective structure functions that depend on spatial increments of vorticity, velocity, and their advection. Numerical simulations of forced-dissipative anisotropic 2-D turbulence are used to compare new and existing relations against model-diagnosed dissipation rates of energy and enstrophy. These simulations permit a dual cascade where forcing is applied at an intermediate scale, energy is dissipated at large scales, and enstrophy is dissipated at small scales. New relations to estimate energy and enstrophy dissipation rates show improvement over existing methods through increased accuracy, insensitivity to sampling direction, and lower temporal and spatial variability. These benefits of advective structure functions are present under weakly anisotropic conditions, and increase with the flow anisotropy as third-order structure functions become increasingly inappropriate. Several of the structure functions also show promise for diagnosing the forcing scale of 2-D turbulence. Velocity-based advective structure functions show particular promise as they can diagnose both enstrophy and energy cascade rates, and are robust to changes in the effective resolution of local derivatives. Some existing and future datasets that are amenable to advective structure function analysis are discussed.  more » « less
Award ID(s):
1655221 2023721
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the impact of compressibility on two-dimensional turbulent flows, such as those modeling astrophysical disks. We demonstrate that the direction of cascade undergoes continuous transition as the Mach numberMaincreases, from inverse atMa = 0, to direct atMa=. Thus, atMa1comparable amounts of energy flow from the pumping scale to large and small scales, in accord with previous data. For supersonic turbulence withMa1the cascade is direct, as in three dimensions, which results in multifractal density field. For that regime (Ma1) we derive a Kolmogorov-type law for potential forcing and obtain an explicit expression for the third order correlation tensor of the velocity. We further show that all third order structure functions are zero up to first order in the inertial range scales, which is in sharp contrast with incompressible turbulence where the third order structure function, that describes the energy flux associated with the energy cascade is non-zero. The properties of compressible turbulence have significant implications on the amplification of magnetic fields in conducting fluids. We thus demonstrate that imposing external magnetic field on compressible flows of conducting fluids allows to manipulate the flow producing possibly large changes even at small Mach numbers. Thus Zeldovich’s antidynamo theorem, by which atMa = 0 the magnetic field is zero in the steady state, must be used with caution. Real flows have finiteMaand, however small it is, for large enough values ofI, the magnetic flux through the disk, the magnetic field changes the flow appreciably, or rearranges it completely. This renders the limitMa → 0 singular for non-zero values ofI. Of particular interest is the effect of the density multifractality, atMa1which is relevant for astrophysical disks. We demonstrate that in that regime, in the presence of non-zeroIthe magnetic field energy is enhanced by a large factor as compared to its estimates based on the mean field. Finally, based on the insights described above, we propose a novel two-dimensional Burgers’ turbulence, whose three-dimensional counterpart is used for studies of the large-scale structure of the Universe, as a model for supersonic two-dimensional magnetohydrodynamic flows.

    more » « less

    We present the first empirical constraints on the turbulent velocity field of the diffuse circumgalactic medium around four luminous quasi-stellar objects (QSOs) at z ≈ 0.5–1.1. Spatially extended nebulae of ≈50–100 physical kpc in diameter centred on the QSOs are revealed in [O ii] $\lambda \lambda \, 3727,3729$ and/or [O iii] $\lambda \, 5008$ emission lines in integral field spectroscopic observations obtained using Multi-Unit Spectroscopic Explorer on the Very Large Telescope. We measure the second- and third-order velocity structure functions (VSFs) over a range of scales, from ≲5 kpc to ≈20–50 kpc, to quantify the turbulent energy transfer between different scales in these nebulae. While no constraints on the energy injection and dissipation scales can be obtained from the current data, we show that robust constraints on the power-law slope of the VSFs can be determined after accounting for the effects of atmospheric seeing, spatial smoothing, and large-scale bulk flows. Out of the four QSO nebulae studied, one exhibits VSFs in spectacular agreement with the Kolmogorov law, expected for isotropic, homogeneous, and incompressible turbulent flows. The other three fields exhibit a shallower decline in the VSFs from large to small scales. However, with a limited dynamic range in the spatial scales in seeing-limited data, no constraints can be obtained for the VSF slopes of these three nebulae. For the QSO nebula consistent with the Kolmogorov law, we determine a turbulence energy cascade rate of ≈0.2 cm2 s−3. We discuss the implication of the observed VSFs in the context of QSO feeding and feedback in the circumgalactic medium.

    more » « less
  3. Abstract Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s −1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean. Significance Statement Relative to upper-ocean measurements of temperature, salinity, and velocity, deep ocean measurements (below 2000 m) are fewer in number and more difficult to collect. Deep measurements are needed, however, to explore the nature of deep ocean circulation contributing to the global redistribution of heat and to determine how upper-ocean behavior impacts or drives deep motions. Understanding of geographic and temporal variability in vertical structures of currents and eddies enables improved description of energy pathways in the ocean driven by turbulent interactions. In this study, we use newly developed autonomous underwater vehicles, capable of diving to the seafloor and back on a near daily basis, to collect high-resolution full ocean depth measurements at various locations in the North Atlantic. These measurements reveal connections between surface and deep motions, and importantly show their time evolution. Results of analyzing these vertical structures reveal the deep ocean to regularly “feel” events in the upper ocean and permit new comparisons to deep motions in climate models. 
    more » « less
  4. Abstract

    While it is well known that cosmic rays (CRs) can gain energy from turbulence via second-order Fermi acceleration, how this energy transfer affects the turbulent cascade remains largely unexplored. Here, we show that damping and steepening of the compressive turbulent power spectrum are expected once the damping timetdampρv2/ĖCRECR1becomes comparable to the turbulent cascade time. Magnetohydrodynamic simulations of stirred compressive turbulence in a gas-CR fluid with diffusive CR transport show clear imprints of CR-induced damping, saturating atĖCRϵ˜, whereϵ˜is the turbulent energy input rate. In that case, almost all of the energy in large-scale motions is absorbed by CRs and does not cascade down to grid scale. Through a Hodge–Helmholtz decomposition, we confirm that purely compressive forcing can generate significant solenoidal motions, and we find preferential CR damping of the compressive component in simulations with diffusion and streaming, rendering small-scale turbulence largely solenoidal, with implications for thermal instability and proposed resonant scattering ofE≳ 300 GeV CRs by fast modes. When CR transport is streaming dominated, CRs also damp large-scale motions, with kinetic energy reduced by up to 1 order of magnitude in realisticECREgscenarios, but turbulence (with a reduced amplitude) still cascades down to small scales with the same power spectrum. Such large-scale damping implies that turbulent velocities obtained from the observed velocity dispersion may significantly underestimate turbulent forcing rates, i.e.,ϵ˜ρv3/L.

    more » « less
  5. The intracluster medium (ICM) in the centers of galaxy clusters is heavily influenced by the “feedback” from supermassive black holes (SMBHs). Feedback can drive turbulence in the ICM and turbulent dissipation can potentially be an important source of heating. Due to the limited spatial and spectral resolutions of X-ray telescopes, direct observations of turbulence in the hot ICM have been challenging. Recently, we developed a new method to measure turbulence in the ICM using multiphase filaments as tracers. These filaments are ubiquitous in cluster centers and can be observed at very high resolution using optical and radio telescopes. We study the kinematics of the filaments by measuring their velocity structure functions (VSFs) over a wide range of scales in the centers of ∼ 10 galaxy clusters. We find features of the VSFs that correlate with the SMBHs activities, suggesting that SMBHs are the main driver of gas motions in the centers of galaxy clusters. In all systems, the VSF is steeper than the classical Kolmogorov expectation and the slopes vary from system to system. One theoretical explanation is that the VSFs we have measured so far mostly reflect the motion of the driver (jets and bubbles) rather than the cascade of turbulence. We show that in Abell 1795, the VSF of the outer filaments far from the SMBH flattens on small scales to a Kolmogorov slope, suggesting that the cascade is only detectable farther out with the current telescope resolution. The level of turbulent heating computed at small scales is typically an order of magnitude lower than that estimated at the driving scale. Even though SMBH feedback heavily influences the kinematics of the ICM in cluster centers, the level of turbulence it drives is rather low, and turbulent heating can only offset ≲ 10% of the cooling loss, consistent with the findings of numerical simulations. 
    more » « less