skip to main content


Title: Optimizing in the Dark: Learning an Optimal Solution through a Simple Request Interface
Network resource reservation systems are being developed and deployed, driven by the demand and substantial benefits of providing performance predictability for modern distributed applications. However, existing systems suffer limitations: They either are inefficient in finding the optimal resource reservation, or cause private information (e.g., from the network infrastructure) to be exposed (e.g., to the user). In this paper, we design BoxOpt, a novel system that leverages efficient oracle construction techniques in optimization and learning theory to automatically, and swiftly learn the optimal resource reservations without exchanging any private information between the network and the user. We implement a prototype of BoxOpt and demonstrate its efficiency and efficacy via extensive experiments using real network topology and trace. Results show that (1) BoxOpt has a 100% correctness ratio, and (2) for 95% of requests, BoxOpt learns the optimal resource reservation within 13 seconds.  more » « less
Award ID(s):
1650596 1637385
NSF-PAR ID:
10120531
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
33
ISSN:
2159-5399
Page Range / eLocation ID:
1674 to 1681
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider information design in spatial resource competition, motivated by ride sharing platforms sharing information with drivers about rider demand. Each of N co-located agents (drivers) decides whether to move to another location with an uncertain and possibly higher resource level (rider demand), where the utility for moving increases in the resource level and decreases in the number of other agents that move. A principal who can observe the resource level wishes to share this information in a way that ensures a welfare-maximizing number of agents move. Analyzing the principal’s information design problem using the Bayesian persuasion framework, we study both private signaling mechanisms, where the principal sends personalized signals to each agent, and public signaling mechanisms, where the principal sends the same information to all agents. We show: 1) For private signaling, computing the optimal mechanism using the standard approach leads to a linear program with 2 N variables, rendering the computation challenging. We instead describe a computationally efficient two-step approach to finding the optimal private signaling mechanism. First, we perform a change of variables to solve a linear program with O(N^2) variables that provides the marginal probabilities of recommending each agent move. Second, we describe an efficient sampling procedure over sets of agents consistent with these optimal marginal probabilities; the optimal private mechanism then asks the sampled set of agents to move and the rest to stay. 2) For public signaling, we first show the welfare-maximizing equilibrium given any common belief has a threshold structure. Using this, we show that the optimal public mechanism with respect to the sender-preferred equilibrium can be computed in polynomial time. 3) We support our analytical results with numerical computations that show the optimal private and public signaling mechanisms achieve substantially higher social welfare when compared with no-information and full-information benchmarks. 
    more » « less
  2. We present and analyze UDM, a new protocol for user discovery in anonymous communication systems that minimizes the information disclosed to the system and users. Unlike existing systems, including those based on private set intersection, UDM learns nothing about the contact lists and social graphs of the users, is not vulnerable to off-line dictionary attacks that expose contact lists, does not reveal platform identifiers to users without the owner’s explicit permission, and enjoys low computation and communication complexity. UDM solves the following user-discovery problem. User Alice wishes to communicate with Bob over an anonymous communication system, such as cMix or Tor. Initially, each party knows each other’s public contact identifier (e.g., email address or phone number), but neither knows the other’s private platform identifier in the communication system. If both parties wish to communicate with each other, UDM enables them to establish a shared key and learn each other’s private platform identifier. UDM uses an untrusted user-discovery system, which processes and stores only public information, hashed values, or values encrypted with keys it does not know. Therefore, UDM cannot learn any information about the social graphs of its users. Using the anonymous communication system, each pair of users who wish to communicate with each other uploads to the user-discovery system their private platform identifier, encrypted with their shared key. Indexing their request by a truncated cryptographic hash of their shared key, each user can then download each other’s encrypted private platform identifier. 
    more » « less
  3. Digital signatures are basic cryptographic tools to provide authentication and integrity in the emerging ubiquitous systems in which resource-constrained devices are expected to operate securely and efficiently. However, existing digital signatures might not be fully practical for such resource-constrained devices (e.g., medical implants) that have energy limitations. Some other computationally efficient alternatives (e.g., one-time/multiple-time signatures) may introduce high memory and/or communication overhead due to large private key and signature sizes. In this paper, our contributions are two-fold: First, we develop a new lightweight multiple-time digital signature scheme called Signer Efficient Multiple-time Elliptic Curve Signature (SEMECS), which is suitable for resource-constrained embedded devices. SEMECS achieves optimal signature and private key sizes for an EC-based signature without requiring any EC operation (e.g., EC scalar multiplication or addition) at the signer. We prove SEMECS is secure (in the random oracle model) with a tight security reduction. Second, we fully implemented SEMECS on an 8-bit AVR microprocessor with a comprehensive energy consumption analysis and comparison. Our experiments confirm up to 19× less battery-consumption for SEMECS as compared to its fastest (full-time) counterpart, SchnorrQ, while offering significant performance advantages over its multiple-time counterparts in various fronts. We open-source our implementation for public testing and adoption. 
    more » « less
  4. This paper introduces a new cryptographic primitive called a private resource allocator (PRA) that can be used to allocate resources (e.g., network bandwidth, CPUs) to a set of clients without revealing to the clients whether any other clients received resources. We give several constructions of PRAs that provide guarantees ranging from information-theoretic to differential privacy. PRAs are useful in preventing a new class of attacks that we call allocation-based side-channel attacks. These attacks can be used, for example, to break the privacy guarantees of anonymous messaging systems that were designed specifically to defend against side-channel and traffic analysis attacks. Our implementation of PRAs in Alpenhorn, which is a recent anonymous messaging system, shows that PRAs increase the network resources required to start a conversation by up to 16× (can be made as low as 4×in some cases), but add no overhead once the conversation has been established. 
    more » « less
  5. This paper studies the problem of information design in a general security game setting in which multiple self-interested defenders attempt to provide protection simultaneously for the same set of important targets against an unknown attacker. A principal, who can be one of the defenders, has access to certain private information (i.e., attacker type), whereas other defenders do not. We investigate the question of how that principal, with additional private information, can influence the decisions of the defenders by partially and strategically revealing her information. In particular, we develop a polynomial time ellipsoid algorithm to compute an optimal private signaling scheme. Our key finding is that the separation oracle in the ellipsoid approach can be carefully reduced to bipartite matching. Furthermore, we introduce a compact representation of any ex ante persuasive signaling schemes by exploiting intrinsic security resource allocation structures, enabling us to compute an optimal scheme significantly faster. Our experiment results show that by strategically revealing private information, the principal can significantly enhance the protection effectiveness for the targets.

     
    more » « less