Stefano Leonardi
(Ed.)

We study the communication complexity of dominant strategy implementations of combinatorial auctions. We start with two domains that are generally considered “easy”: multi-unit auctions with decreasing marginal values and combinatorial auctions with gross substitutes valuations. For both domains we have fast algorithms that find the welfare-maximizing allocation with communication complexity that is poly-logarithmic in the input size. This immediately implies that welfare maximization can be achieved in ex-post equilibrium with no significant communication cost, by using VCG payments. In contrast, we show that in both domains the communication complexity of any dominant strategy implementation that achieves the optimal welfare is polynomial in the input size. We then move on to studying the approximation ratios achievable by dominant strategy mechanisms. For multi-unit auctions with decreasing marginal values, we provide a dominant-strategy communication FPTAS. For combinatorial auctions with general valuations, we show that there is no dominant strategy mechanism that achieves an approximation ratio better than m1−є that uses poly(m,n) bits of communication, where m is the number of items and n is the number of bidders. In contrast, a randomized dominant strategy mechanism that achieves an O(√m) approximation with poly(m,n) communication is known. This proves the first gap between computationally efficientmore »