skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Residual Saturation Based Kalman Filter for Smart Grid State Estimation Under Cyber Attacks
Most of the traditional state estimation algorithms are provided false alarm when there is attack. This paper proposes an attack-resilient algorithm where attack is automatically ignored, and the state estimation process is continuing which acts a grid-eye for monitoring whole power systems. After modeling the smart grid incorporating distributed energy resources, the smart sensors are deployed to gather measurement information where sensors are prone to attacks. Based on the noisy and cyber attack measurement information, the optimal state estimation algorithm is designed. When the attack is happened, the measurement residual error dynamic goes high and it can ignore using proposed saturation function. Moreover, the proposed saturation function is automatically computed in a dynamic way considering residual error and deigned parameters. Combing the aforementioned approaches, the Kalman filter algorithm is modified which is applied to the smart grid state estimation. The simulation results show that the proposed algorithm provides high estimation accuracy.  more » « less
Award ID(s):
1837472
PAR ID:
10120569
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of 9th IEEE International Conference on CYBER Technology in Automation, Control and Intelligent Systems (IEEE-CYBER 2019)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the modern power system networks, grid observability has greatly increased due to the deployment of various metering technologies. Such technologies enhanced the real-time monitoring of the grid. The collection of observations are processed by the state estimator in which many applications have relied on. Traditionally, state estimation on power grids has been done considering a centralized architecture. With grid deregulation, and awareness of information privacy and security, much attention has been given to multi-area state estimation. Considering such, state-of-the-art solutions consider a weighted norm of residual measurement model, which might hinder masked gross errors contained in the null-space of the Jacobian matrix. Towards the solution of this, a distributed innovation-based model is presented. Measurement innovation is used towards error composition. The measurement error is an independent random variable, where the residual is not. Thus, the masked component is recovered through measurement innovation. Model solution is obtained through an Alternating Direction Method of Multipliers (ADMM), which requires minimal information communication. The presented framework is validated using the IEEE 14 and IEEE 118 bus systems. Easy-to-implement model, build-on the classical weighted norm of the residual solution, and without hard-to-design parameters highlight potential aspects towards real-life implementation. 
    more » « less
  2. Falsified data from compromised Phasor Measurement Units (PMUs) in a smart grid induce Energy Management Systems (EMS) to have an inaccurate estimation of the state of the grid, disrupting various operations of the power grid. Moreover, the PMUs deployed at the distribution layer of a smart grid show dynamic fluctuations in their data streams, which make it extremely challenging to design effective learning frameworks for anomaly based attack detection. In this paper, we propose a noise resilient learning framework for anomaly based attack detection specifically for distribution layer PMU infrastructure, that show real time indicators of data falsifications attacks while offsetting the effect of false alarms caused by the noise. Specifically, we propose a feature extraction framework that uses some Pythagorean Means of the active power from a cluster of PMUs, reducing multi-dimensional nature of the PMU data streams via quick big data summarization. We also propose a robust and noise resilient methodology for learning thresholds based on generalized robust estimation theory of our invariant feature. We experimentally validate our approach and demonstrate improved reliability performance using two completely different datasets collected from real distribution level PMU infrastructures. 
    more » « less
  3. The widespread application of phasor measurement units has improved grid operational reliability. However, this has increased the risk of cyber threats such as false data injection attack that mislead time-critical measurements, which may lead to incorrect operator actions. While a single incorrect operator action might not result in a cascading failure, a series of actions impacting critical lines and transformers, combined with pre-existing faults or scheduled maintenance, might lead to widespread outages. To prevent cascading failures, controlled islanding strategies are traditionally implemented. However, islanding is effective only when the received data are trustworthy. This paper investigates two multi-objective controlled islanding strategies to accommodate data uncertainties under scenarios of lack of or partial knowledge of false data injection attacks. When attack information is not available, the optimization problem maximizes island observability using a minimum number of phasor measurement units for a more accurate state estimation. When partial attack information is available, vulnerable phasor measurement units are isolated to a smaller island to minimize the impacts of attacks. Additional objectives ensure steady-state and transient-state stability of the islands. Simulations are performed on 200-bus, 500-bus, and 2000-bus systems. 
    more » « less
  4. This paper focuses on the detection of cyber-attack on a communication channel and simultaneous radar health monitoring for a connected vehicle. A semi-autonomous adaptive cruise control (SA-ACC) vehicle is considered which has wireless communication with its immediately preceding vehicle to operate at small time-gap distances without creating string instability. However, the reliability of the wireless connectivity is critical for ensuring safe vehicle operation. The presence of two unknown inputs related to both sensor failure and cyber-attack seemingly poses a difficult estimation challenge. The dynamic system is first represented in descriptor system form. An observer with estimation error dynamics decoupled from the cyber-attack signal is developed. The performance of the observer is extensively evaluated in simulations. The estimation system is able to detect either a fault in the velocity measurement radar channel or a cyber-attack. Also, the proposed observer-based controller achieves resilient SA-ACC system under the cyber-attacks. The fundamental estimation algorithm developed herein can be extended in the future to enable cyber-attack detection in more complex connected vehicle architectures. 
    more » « less
  5. Using real-world data from Waveform Measurement Units (WMUs), this letter proposes novel data-driven methods to model the dynamic response of inverter-based resource (IBR) to the high-frequency disturbances that occur in practice in power systems. WMUs are an emerging class of smart grid sensors. They can capture the fast sub-cycle dynamics in power systems, which are overlooked by phasor measurement units (PMUs). After extracting the differential voltage and current waveforms from the raw waveform data, we develop multiple methods that include data-driven model library construction and proper model selection. One class of methods is proposed in frequency domain, which is based on modal analysis. Another class of methods is proposed in time domain, which is based on regression analysis of time-series. Experimental results based on real-world WMU data demonstrate the of performance the proposed methods. 
    more » « less