skip to main content


Title: Response Regulators 9 and 10 Negatively Regulate Salinity Tolerance in Rice
Abstract

Cytokinins are involved in the regulation of many plant growth and development processes, and function in response to abiotic stress. Cytokinin signaling is similar to the prokaryotic two-component signaling systems and includes the transcriptional upregulation of type-A response regulators (RRs), which in turn act to inhibit cytokinin signal response via negative feedback. Cytokinin signaling consists of several gene families and only a handful full of genes is studied. In this study, we demonstrated the function of two highly identical type-A RR genes from rice, OsRR9 and OsRR10, which are induced by cytokinin and only OsRR10 repressed by salinity stress in rice. Loss-of-function mutations give rise to mutant genes, osrr9/osrr10, which have higher salinity tolerance than wild type rice seedlings. The transcriptomic analysis uncovered several ion transporter genes, which were upregulated in response to salt stress in the osrr9/osrr10 mutants relative to the wild type seedlings. These include high-affinity potassium transporters, such as OsHKT1;1, OsHKT1;3 and OsHKT2;1, which play an important role in sodium and potassium homeostasis. In addition, disruption of the genes OsRR9 and OsRR10 also affects the expression of multiple genes related to photosynthesis, transcription and phytohormone signaling. Taken together, these results suggest that the genes OsRR9 and OsRR10 function as negative regulators in response to salinity in rice.

 
more » « less
NSF-PAR ID:
10120864
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Plant and Cell Physiology
ISSN:
0032-0781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    The phytohormone cytokinin plays a significant role in nearly all aspects of plant growth and development. Cytokinin signaling has primarily been studied in the dicot model Arabidopsis, with relatively little work done in monocots, which include rice (Oryza sativa) and other cereals of agronomic importance. The cytokinin signaling pathway is a phosphorelay comprised of the histidine kinase receptors, the authentic histidine phosphotransfer proteins (AHPs) and type‐B response regulators (RRs). Two negative regulators of cytokinin signaling have been identified: the type‐A RRs, which are cytokinin primary response genes, and the pseudo histidine phosphotransfer proteins (PHPs), which lack the His residue required for phosphorelay. Here, we describe the role of the ricePHPgenes. Phylogenic analysis indicates that the PHPs are generally first found in the genomes of gymnosperms and that they arose independently in monocots and dicots. Consistent with this, the three ricePHPsfail to complement an Arabidopsisphpmutant (aphp1/ahp6). Disruption of the three ricePHPsresults in a molecular phenotype consistent with these elements acting as negative regulators of cytokinin signaling, including the induction of a number of type‐A RR and cytokinin oxidase genes. The triplephpmutant affects multiple aspects of rice growth and development, including shoot morphology, panicle architecture, and seed fill. In contrast to Arabidopsis, disruption of the ricePHPsdoes not affect root vascular patterning, suggesting that while many aspects of key signaling networks are conserved between monocots and dicots, the roles of at least some cytokinin signaling elements are distinct.

     
    more » « less
  2. The phytohormone cytokinin influences many aspects of plant growth and development, several of which also involve the cellular process of autophagy, including leaf senescence, nutrient remobilization, and developmental transitions. TheArabidopsistype-A response regulators (type-A ARR) are negative regulators of cytokinin signaling that are transcriptionally induced in response to cytokinin. Here, we describe a mechanistic link between cytokinin signaling and autophagy, demonstrating that plants modulate cytokinin sensitivity through autophagic regulation of type-A ARR proteins. Type-A ARR proteins were degraded by autophagy in an AUTOPHAGY-RELATED (ATG)5-dependent manner, and this degradation is promoted by phosphorylation on a conserved aspartate in the receiver domain of the type-A ARRs. EXO70D family members interacted with type-A ARR proteins, likely in a phosphorylation-dependent manner, and recruited them to autophagosomes via interaction of the EXO70D AIM with the core autophagy protein, ATG8. Consistently, loss-of-functionexo70D1,2,3mutants exhibited compromised targeting of type-A ARRs to autophagic vesicles, have elevated levels of type-A ARR proteins, and are hyposensitive to cytokinin. Disruption of both type-AARRsandEXO70D1,2,3compromised survival in carbon-deficient conditions, suggesting interaction between autophagy and cytokinin responsiveness in response to stress. These results indicate that the EXO70D proteins act as selective autophagy receptors to target type-A ARR cargos for autophagic degradation, demonstrating modulation of cytokinin signaling by selective autophagy.

     
    more » « less
  3. Summary

    Cytokinins control critical aspects of plant development and environmental responses. Perception of cytokinin ultimately leads to the activation of proteins belonging to the type‐B Response Regulator family of cytokinin response activators. InArabidopsis thaliana, ARR1 is one of the most abundantly expressed type‐B Response Regulators.

    We investigated the link between cytokinin signaling, protein synthesis, plant growth and osmotic stress tolerance.

    We show that the increased cytokinin signaling in ARR1 gain‐of‐function transgenic lines is associated with increased rates of protein synthesis, which lead to growth inhibition and hypersensitivity to osmotic stress. Cytokinin‐induced growth inhibition and osmotic stress hypersensitivity were rescued by treatments with ABA, a hormone known to inhibit protein synthesis. We also demonstrate that cytokinin‐induced protein synthesis requires isoforms of the ribosomal protein L4 encoded by the cytokinin‐inducible genesRPL4AandRPL4D, and thatRPL4loss‐of‐function increases osmotic stress tolerance and decreases sensitivity to cytokinin‐induced growth inhibition.

    These findings reveal that an increase in protein synthesis negatively impacts growth and osmotic stress tolerance and explain some of the adverse effects of elevated cytokinin action on plant development and stress physiology.

     
    more » « less
  4. SUMMARY

    Cytokinin has strong connections to development and a growing role in the abiotic stress response. Here we show that CYTOKININ RESPONSE FACTOR 2 (CRF2) is additionally involved in the salt (NaCl) stress response. CRF2 promoter‐GUS expression indicates CRF2 involvement in the response to salt stress as well as the previously known cytokinin response. Interestingly, CRF2 mutant seedlings are quite similar to the wild type (WT) under non‐stressed conditions yet have many distinct changes in response to salt stress. Cytokinin levels measured by liquid chromatography–tandem mass spectrometry (LC‐MS/MS) that increased in the WT after salt stress are decreased incrf2, potentially from CRF2 regulation of cytokinin biosynthesis genes. Ion content measured by inductively coupled plasma optical emission spectrometry (ICP‐OES) was increased in the WT for Na, K, Mn, Ca and Mg after salt stress, whereas the corresponding Ca and Mg increases are lacking incrf2. Many genes examined by RNA‐seq analysis were altered transcriptionally by salt stress in both the WT andcrf2, yet interestingly approximately one‐third of salt‐modifiedcrf2transcripts (2655) showed unique regulation. Different transcript profiles for salt stress incrf2compared with the WT background was further supported through an examination of co‐expressed genes by weighted gene correlation network analysis (WGCMA) and principal component analysis (PCA). Additionally, Gene Ontology (GO) enrichment terms found from salt‐treated transcripts revealed most photosynthesis‐related terms as only being affected incrf2, leading to an examination of chlorophyll levels and the efficiency of photosystem II (via the ratio of variable fluorescence to maximum fluorescence,Fv/Fm) as well as physiology after salt treatment. Salt stress‐treatedcrf2plants had both reduced chlorophyll levels and lowerFv/Fmvalues compared with the WT, suggesting that CRF2 plays a role in the modulation of salt stress responses linked to photosynthesis.

     
    more » « less
  5. Abstract

    Sigma factor (SIG) proteins contribute to promoter specificity of the plastid‐encodedRNApolymerase during chloroplast genome transcription. All six members of theSIGfamily, that is,SIG1–SIG6, are nuclear‐encoded proteins targeted to chloroplasts. Sigma factor 2 (SIG2) is a phytochrome‐regulated protein important for stoichiometric control of the expression of plastid‐ and nuclear‐encoded genes that impact plastid development and plant growth and development. AmongSIGfactors,SIG2 is required not only for transcription of chloroplast genes (i.e., anterograde signaling), but also impacts nuclear‐encoded, photosynthesis‐related, and light signaling‐related genes (i.e., retrograde signaling) in response to plastid functional status. AlthoughSIG2 is involved in photomorphogenesis in Arabidopsis, the molecular bases for its role in light signaling that impacts photomorphogenesis and aspects of photosynthesis have only recently begun to be investigated. Previously, we reported thatSIG2 is necessary for phytochrome‐mediated photomorphogenesis specifically under red (R) and far‐red light, thereby suggesting a link between phytochromes and nuclear‐encodedSIG2 in light signaling. To explore transcriptional roles ofSIG2 in R‐dependent growth and development, we performedRNAsequencing analysis to compare gene expression insig2‐2mutant and Col‐0 wild‐type seedlings at two developmental stages (1‐ and 7‐day). We identified a subset of misregulated genes involved in growth, hormonal cross talk, stress responses, and photosynthesis. To investigate the functional relevance of these gene expression analyses, we performed several comparative phenotyping tests. In these analyses, strongsig2mutants showed insensitivity to bioactiveGA3, high intracellular levels of hydrogen peroxide (H2O2) indicative of a stress response, and specific defects in photosynthesis, including elevated levels of cyclic electron flow (CEF) and nonphotochemical quenching (NPQ). We demonstrated thatSIG2 regulates a broader range of physiological responses at the molecular level than previously reported, with specific roles in red‐light‐mediated photomorphogenesis.

     
    more » « less