skip to main content

Title: The North Pacific Pacemaker Effect on Historical ENSO and Its Mechanisms
Abstract

Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El more » Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.

« less
Authors:
 ;  ;  ;  ;  ;  
Award ID(s):
1637450
Publication Date:
NSF-PAR ID:
10121056
Journal Name:
Journal of Climate
Volume:
32
Issue:
22
Page Range or eLocation-ID:
p. 7643-7661
ISSN:
0894-8755
Publisher:
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Regional ocean–atmospheric interactions in the summer tropical Indo–northwest Pacific region are investigated using a tropical Pacific Ocean–global atmosphere pacemaker experiment with a coupled ocean–atmospheric model (cPOGA) and a parallel atmosphere model simulation (aPOGA) forced with sea surface temperature (SST) variations from cPOGA. Whereas the ensemble mean features pronounced influences of El Niño–Southern Oscillation (ENSO), the ensemble spread represents internal variability unrelated to ENSO. By comparing the aPOGA and cPOGA, this study examines the effect of the ocean–atmosphere coupling on the ENSO-unrelated variability. In boreal summer, ocean–atmosphere coupling induces local positive feedback to enhance the variance and persistence of themore »sea level pressure and rainfall variability over the northwest Pacific and likewise induces local negative feedback to suppress the variance and persistence of the sea level pressure and rainfall variability over the north Indian Ocean. Anomalous surface heat fluxes induced by internal atmosphere variability cause SST to change, and SST anomalies feed back onto the atmosphere through atmospheric convection. The local feedback is sensitive to the background winds: positive under the mean easterlies and negative under the mean westerlies. In addition, north Indian Ocean SST anomalies reinforce the low-level anomalous circulation over the northwest Pacific through atmospheric Kelvin waves. This interbasin interaction, along with the local feedback, strengthens both the variance and persistence of atmospheric variability over the northwest Pacific. The response of the regional Indo–northwest Pacific mode to ENSO and influences on the Asian summer monsoon are discussed.« less
  2. Abstract Although the 1997/98 and 2015/16 El Niño events are considered to be the strongest on record, their subsequent La Niña events exhibited contrasted evolutions. In this study, we demonstrate that the extremely strong period of Tropical Instability Waves (TIWs) at the beginning of boreal summer of 2016 played an important role in hindering the subsequent La Niña’s development by transporting extra off-equatorial heat into the Pacific cold tongue. By comparing the TIWs contribution based on an oceanic mixed-layer heat budget analysis for the 1998 and 2016 episodes, we establish that TIW-induced nonlinear dynamical heating (NDH) is a significant contributormore »to the El Niño-Southern Oscillation (ENSO) phase transition in 2016. TIW-induced NDH contributed to around 0.4°C per month warming during the early boreal summer (May-June) following the 2015/16 El Niño’s peak, which is found to be an essential inhibiting factor that prevented the subsequent La Niña’s growth. A time-mean eddy kinetic energy analysis reveals that anomalous TIWs during 2016 mainly gained their energy from the baroclinic instability conversion due to a strong SST warming in the northeastern off-equatorial Pacific that promoted an increased meridional SST gradient. This highlights the importance of accurately reproducing TIW activity in ENSO simulation and the benefit of off-equatorial SST anomalies in the eastern Pacific as an independent precursor for ENSO predictions.« less
  3. El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGAmore »ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.

    « less
  4. Abstract This study examines the climate response to a sea surface temperature (SST) warming imposed over the southwest Tropical Indian Ocean (TIO) in a coupled ocean-atmosphere model. The results indicate that the southwest TIO SST warming can remotely modulate the atmospheric circulation over the western North Pacific (WNP) via inter-basin air-sea interaction during early boreal summer. The southwest TIO SST warming induces a “C-shaped” wind response with northeasterly and northwesterly anomalies over the north and south TIO, respectively. The northeasterly wind anomalies contribute to the north TIO SST warming via a positive Wind-Evaporation-SST(WES) feedback after the Asian summer monsoon onset.more »In June, the easterly wind response extends into the WNP, inducing an SST cooling by WES feedback on the background trade winds. Both the north TIO SST warming and the WNP SST cooling contribute to an anomalous anticyclonic circulation (AAC) over the WNP. The north TIO SST warming, WNP SST cooling, and AAC constitute an inter-basin coupled mode called the Indo-western Pacific ocean capacitor (IPOC), and the southwest TIO SST warming could be a trigger for IPOC. While the summertime southwest TIO SST warming is often associated with antecedent El Niño, the warming in 2020 seems to be related to extreme Indian Ocean Dipole in 2019 fall. The strong southwest TIO SST warming seems to partly explain the strong summer AAC of 2020 over the WNP even without a strong antecedent El Niño.« less
  5. The El Niño Southern Oscillation (ENSO) is a major source of interannual climate variability. ENSO life cycles and the associated teleconnections evolve over multiple years at a global scale. This analysis is the first attempt to characterize the structure of the risk posed by trans-Pacific ENSO teleconnections to crop production in the greater Pacific Basin region. In this analysis we identify the large-scale atmospheric dynamics of ENSO teleconnections that affect heat and moisture stress during the growing seasons of maize, wheat and soy. We propose a coherent framework for understanding how trans-Pacific ENSO teleconnections pose a correlated risk to cropmore »yields in major agricultural belts of the Americas, Australia and China over the course of an ENSO life cycle by using observations and a multi-model ensemble of climate anomalies during crop flowering seasons. Trans-Pacific ENSO teleconnections are often (but not always) offsetting between major producing regions in the Americas and those in northern China or Australia. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in northern China, southern Mexico and the Cerrado in Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Furthermore, multi-year La Niñas can force multi-year growing season anomalies in Argentina and Australia. Most ENSO teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the following spring. During the late summer and early fall of a developing ENSO event, the tropical Pacific forces an atmospheric anomaly in the northern midlatitudes that spans the Pacific from northern China to North America and in the southern midlatitudes from Australia to southeast South America. This anomaly directly links the soybean and maize growing seasons of the US, Mexico and China and the wheat growing seasons of Argentina, southern Brazil and Australia. The ENSO event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the ENSO-induced circulation anomalies persist through the wheat flowering seasons in China and the US.« less