skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: The North Pacific Pacemaker Effect on Historical ENSO and Its Mechanisms
Abstract

Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.

 
more » « less
Award ID(s):
1637450
NSF-PAR ID:
10121056
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
32
Issue:
22
ISSN:
0894-8755
Page Range / eLocation ID:
p. 7643-7661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Regional ocean–atmospheric interactions in the summer tropical Indo–northwest Pacific region are investigated using a tropical Pacific Ocean–global atmosphere pacemaker experiment with a coupled ocean–atmospheric model (cPOGA) and a parallel atmosphere model simulation (aPOGA) forced with sea surface temperature (SST) variations from cPOGA. Whereas the ensemble mean features pronounced influences of El Niño–Southern Oscillation (ENSO), the ensemble spread represents internal variability unrelated to ENSO. By comparing the aPOGA and cPOGA, this study examines the effect of the ocean–atmosphere coupling on the ENSO-unrelated variability. In boreal summer, ocean–atmosphere coupling induces local positive feedback to enhance the variance and persistence of the sea level pressure and rainfall variability over the northwest Pacific and likewise induces local negative feedback to suppress the variance and persistence of the sea level pressure and rainfall variability over the north Indian Ocean. Anomalous surface heat fluxes induced by internal atmosphere variability cause SST to change, and SST anomalies feed back onto the atmosphere through atmospheric convection. The local feedback is sensitive to the background winds: positive under the mean easterlies and negative under the mean westerlies. In addition, north Indian Ocean SST anomalies reinforce the low-level anomalous circulation over the northwest Pacific through atmospheric Kelvin waves. This interbasin interaction, along with the local feedback, strengthens both the variance and persistence of atmospheric variability over the northwest Pacific. The response of the regional Indo–northwest Pacific mode to ENSO and influences on the Asian summer monsoon are discussed. 
    more » « less
  2. null (Ed.)
    Abstract Although the 1997/98 and 2015/16 El Niño events are considered to be the strongest on record, their subsequent La Niña events exhibited contrasted evolutions. In this study, we demonstrate that the extremely strong period of Tropical Instability Waves (TIWs) at the beginning of boreal summer of 2016 played an important role in hindering the subsequent La Niña’s development by transporting extra off-equatorial heat into the Pacific cold tongue. By comparing the TIWs contribution based on an oceanic mixed-layer heat budget analysis for the 1998 and 2016 episodes, we establish that TIW-induced nonlinear dynamical heating (NDH) is a significant contributor to the El Niño-Southern Oscillation (ENSO) phase transition in 2016. TIW-induced NDH contributed to around 0.4°C per month warming during the early boreal summer (May-June) following the 2015/16 El Niño’s peak, which is found to be an essential inhibiting factor that prevented the subsequent La Niña’s growth. A time-mean eddy kinetic energy analysis reveals that anomalous TIWs during 2016 mainly gained their energy from the baroclinic instability conversion due to a strong SST warming in the northeastern off-equatorial Pacific that promoted an increased meridional SST gradient. This highlights the importance of accurately reproducing TIW activity in ENSO simulation and the benefit of off-equatorial SST anomalies in the eastern Pacific as an independent precursor for ENSO predictions. 
    more » « less
  3. Abstract

    The summer North American dipole (NAD) is a pattern of climate variability linked to variations in boreal forest seed production and migration of seed-eating birds. This is a modeling investigation of two teleconnections identified as drivers of the NAD in prior observational work: 1) tropically sourced atmospheric Rossby waves associated with anomalies in the phase distribution of the Madden–Julian oscillation (MJO) (i.e., phases 1 and 6 are anomalously prominent), and 2) a pan-Pacific atmospheric Rossby wave linked to East Asian monsoonal (EAM) convection. Sea surface temperature (SST) boundary forcing experiments were conducted with the Community Earth System Model 2 (CESM2) to trigger convection patterns that align with those observed during EAM and nonuniform phase distributions of MJO. For the EAM case, an El Niño–like SST dipole pattern combined with cool southern Japan SST forcing produced a convection and jet stream shift anomaly over East Asia and the northern Pacific with a positive NAD pattern downstream over North America, similar to the observed pattern when precipitation over East Asia (PEA) is relatively high. A companion experiment with only ENSO-like SST forcing also produced the NAD but featured a different structure over the Eurasian continent with a response resembling the summer east Atlantic (SEA) pattern over eastern North America and the eastern Atlantic. Simulation results suggest that the southern Japan SST forcing region has a secondary importance in triggering the NAD, producing only a somewhat NAD-like pattern by itself and only slightly improving the NAD produced by ENSO-like forcing. Simulations using SST forcing to induce seasonal convection anomalies with spatial patterns similar to anomalously frequent occurrence of MJO phase 1 (phase 6) produced circulation response patterns resembling the positive NAD (negative NAD).

     
    more » « less
  4. We investigate the tropical Pacific annual cycle and the El Niño/Southern Oscillation (ENSO) in four mid‐Holocene simulations. Our results show that both ENSO variability and the amplitude of the annual cycle of the tropical Pacific cold tongue are reduced under mid‐Holocene forcing, along with a modified annual cycle in ENSO variance. The weakened annual cycle of the cold tongue is attributed to an ocean dynamical response to westerly wind anomalies in the western equatorial Pacific in boreal spring in addition to a thermodynamic response to local insolation changes in the eastern Pacific. The anomalous westerly winds in boreal spring excite an annual downwelling Kelvin wave that deepens the thermocline and propagates eastward along the equator, reaching the central and eastern equatorial Pacific during the development season of ENSO in boreal summer. Upon reaching the eastern Pacific, the downwelling Kelvin wave deepens the near‐surface thermocline, warming the surface ocean and weakening the local ocean‐atmosphere coupling critical to the growth of ENSO events. The westerly wind anomaly is associated with a shift in convection in the western Pacific driven by greater cooling of the Maritime Continent than western Pacific Ocean during the first half of the year (January to June) under tropical insolation forcing. By elucidating a common set of mechanisms responsible for a reduced cold tongue annual cycle and ENSO variability in a diverse range of mid‐Holocene simulations, this work yields important insight into the linkages between the tropical Pacific annual cycle and ENSO that are critical for understanding tropical Pacific climate variability. 
    more » « less
  5. El Niño–Southern Oscillation (ENSO) peaks in boreal winter but its impact on Indo-western Pacific climate persists for another two seasons. Key ocean–atmosphere interaction processes for the ENSO effect are investigated using the Pacific Ocean–Global Atmosphere (POGA) experiment with a coupled general circulation model, where tropical Pacific sea surface temperature (SST) anomalies are restored to follow observations while the atmosphere and oceans are fully coupled elsewhere. The POGA shows skills in simulating the ENSO-forced warming of the tropical Indian Ocean and an anomalous anticyclonic circulation pattern over the northwestern tropical Pacific in the post–El Niño spring and summer. The 10-member POGA ensemble allows decomposing Indo-western Pacific variability into the ENSO forced and ENSO-unrelated (internal) components. Internal variability is comparable to the ENSO forcing in magnitude and independent of ENSO amplitude and phase. Random internal variability causes apparent decadal modulations of ENSO correlations over the Indo-western Pacific, which are high during epochs of high ENSO variance. This is broadly consistent with instrumental observations over the past 130 years as documented in recent studies. Internal variability features a sea level pressure pattern that extends into the north Indian Ocean and is associated with coherent SST anomalies from the Arabian Sea to the western Pacific, suggestive of ocean–atmosphere coupling.

     
    more » « less