skip to main content

Title: Joint Service Placement and Request Routing in Multi-cell Mobile Edge Computing Networks
The proliferation of innovative mobile services such as augmented reality, networked gaming, and autonomous driving has spurred a growing need for low-latency access to computing resources that cannot be met solely by existing centralized cloud systems. Mobile Edge Computing (MEC) is expected to be an effective solution to meet the demand for low-latency services by enabling the execution of computing tasks at the network-periphery, in proximity to end-users. While a number of recent studies have addressed the problem of determining the execution of service tasks and the routing of user requests to corresponding edge servers, the focus has primarily been on the efficient utilization of computing resources, neglecting the fact that non-trivial amounts of data need to be stored to enable service execution, and that many emerging services exhibit asymmetric bandwidth requirements. To fill this gap, we study the joint optimization of service placement and request routing in MEC-enabled multi-cell networks with multidimensional (storage-computation-communication) constraints. We show that this problem generalizes several problems in literature and propose an algorithm that achieves close-to-optimal performance using randomized rounding. Evaluation results demonstrate that our approach can effectively utilize the available resources to maximize the number of requests served by low-latency edge cloud servers.
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
IEEE International Conference on Computer Communications
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile edge computing (MEC) is an emerging paradigm that integrates computing resources in wireless access networks to process computational tasks in close proximity to mobile users with low latency. In this paper, we propose an online double deep Q networks (DDQN) based learning scheme for task assignment in dynamic MEC networks, which enables multiple distributed edge nodes and a cloud data center to jointly process user tasks to achieve optimal long-term quality of service (QoS). The proposed scheme captures a wide range of dynamic network parameters including non-stationary node computing capabilities, network delay statistics, and task arrivals. It learns themore »optimal task assignment policy with no assumption on the knowledge of the underlying dynamics. In addition, the proposed algorithm accounts for both performance and complexity, and addresses the state and action space explosion problem in conventional Q learning. The evaluation results show that the proposed DDQN-based task assignment scheme significantly improves the QoS performance, compared to the existing schemes that do not consider the effects of network dynamics on the expected long-term rewards, while scaling reasonably well as the network size increases.« less
  2. The increased use of micro-services to build web applications has spurred the rapid growth of Function-as-a-Service (FaaS) or serverless computing platforms. While FaaS simplifies provisioning and scaling for application developers, it introduces new challenges in resource management that need to be handled by the cloud provider. Our analysis of popular serverless workloads indicates that schedulers need to handle functions that are very short-lived, have unpredictable arrival patterns, and require expensive setup of sandboxes. The challenge of running a large number of such functions in a multi-tenant cluster makes existing scheduling frameworks unsuitable. We present Archipelago, a platform that enables lowmore »latency request execution in a multi-tenant serverless setting. Archipelago views each application as a DAG of functions, and every DAG in associated with a latency deadline. Archipelago achieves its per-DAG request latency goals by: (1) partitioning a given cluster into a number of smaller worker pools, and associating each pool with a semi-global scheduler (SGS), (2) using a latency-aware scheduler within each SGS along with proactive sandbox allocation to reduce overheads, and (3) using a load balancing layer to route requests for different DAGs to the appropriate SGS, and automatically scale the number of SGSs per DAG. Our testbed results show that Archipelago meets the latency deadline for more than 99% of realistic application request workloads, and reduces tail latencies by up to 36X compared to state-of-the-art serverless platforms.« less
  3. Task offloading in edge computing infrastructure remains a challenge for dynamic and complex environments, such as Industrial Internet-of-Things. The hardware resource constraints of edge servers must be explicitly considered to ensure that system resources are not overloaded. Many works have studied task offloading while focusing primarily on ensuring system resilience. However, in the face of deep learning-based services, model performance with respect to loss/accuracy must also be considered. Deep learning services with different implementations may provide varying amounts of loss/accuracy while also being more complex to run inference on. That said, communication latency can be reduced to improve overall Quality-of-Servicemore »by employing compression techniques. However, such techniques can also have the side-effect of reducing the loss/accuracy provided by deep learning-based service. As such, this work studies a joint optimization problem for task offloading decisions in 3-tier edge computing platforms where decisions regarding task offloading are made in tandem with compression decisions. The objective is to optimally offload requests with compression such that the trade-off between latency-accuracy is not greatly jeopardized. We cast this problem as a mixed integer nonlinear program. Due to its nonlinear nature, we then decompose it into separate subproblems for offloading and compression. An efficient algorithm is proposed to solve the problem. Empirically, we show that our algorithm attains roughly a 0.958-approximation of the optimal solution provided by a block coordinate descent method for solving the two sub-problems back-to-back.« less
  4. Edge Computing is a new computing paradigm where applications operate at the network edge, providing low-latency services with augmented user and data privacy. A desirable goal for edge computing is pervasiveness, that is, enabling any capable and authorized entity at the edge to provide desired edge services--pervasive edge computing (PEC). However, efficient access control of users receiving services and edge servers handling user data, without sacrificing performance is a challenge. Current solutions, based on "always-on" authentication servers in the cloud, negate the latency benefits of services at the edge and also do not preserve user and data privacy. In thismore »paper, we present APECS, an advanced access control framework for PEC, which allows legitimate users to utilize any available edge services without need for communication beyond the network edge. The APECS framework leverages multi-authority attribute-based encryption to create a federated authority, which delegates the authentication and authorization tasks to semi-trusted edge servers, thus eliminating the need for an "always-on" authentication server in the cloud. Additionally, APECS prevents access to encrypted content by unauthorized edge servers. We analyze and prove the security of APECS in the Universal Composability framework and provide experimental results on the GENI testbed to demonstrate the scalability and effectiveness of APECS.« less
  5. Edge cloud data centers (Edge) are deployed to provide responsive services to the end-users. Edge can host more powerful CPUs and DNN accelerators such as GPUs and may be used for offloading tasks from end-user devices that require more significant compute capabilities. But Edge resources may also be limited and must be shared across multiple applications that process requests concurrently from several clients. However, multiplexing GPUs across applications is challenging. With edge cloud servers needing to process a lot of streaming and the advent of multi-GPU systems, getting that data from the network to the GPU can be a bottleneck,more »limiting the amount of work the GPU cluster can do. The lack of prompt notification of job completion from the GPU can also result in poor GPU utilization. We build on our recent work on controlled spatial sharing of a single GPU to expand to support multi-GPU systems and propose a framework that addresses these challenges. Unlike the state-of-the-art uncontrolled spatial sharing currently available with systems such as CUDA-MPS, our controlled spatial sharing approach uses each of the GPU in the cluster efficiently by removing interference between applications, resulting in much better, predictable, inference latency We also use each of the cluster GPU's DMA engines to offload data transfers to the GPU complex, thereby preventing the CPU from being the bottleneck. Finally, our framework uses the CUDA event library to give timely, low overhead GPU notifications. Our evaluations show we can achieve low DNN inference latency and improve DNN inference throughput by at least a factor of 2.« less