skip to main content

Title: Categorizing Live Streaming Moderation Tools: An Analysis of Twitch
Twitch is one of the largest live streaming platforms and is unique from other social media in that it supports synchronous interaction and enables users to engage in moderation of the content through varied technical tools, which include auto-moderation tools provided by Twitch, third-party applications, and home-brew apps. The authors interviewed 21 moderators on Twitch and categorized the current features of real-time moderation tools they are using into four functions (chat control, content control, viewer control, settings control) and explored some new features of tools that they wish to own (e.g., grouping chat by languages, pop out window to hold messages, chat slow down, a set of buttons with pre-written/pre-message content, viewer activity tracking, all in one). Design implications provide suggestions for chatbots and algorithm design and development.
Authors:
;
Award ID(s):
1841354
Publication Date:
NSF-PAR ID:
10121260
Journal Name:
International Journal of Interactive Communication Systems and Technologies
Volume:
9
Issue:
2
Page Range or eLocation-ID:
36 to 50
ISSN:
2155-4218
Sponsoring Org:
National Science Foundation
More Like this
  1. Research suggests that marginalized social media users face disproportionate content moderation and removal. However, when content is removed or accounts suspended, the processes governing content moderation are largely invisible, making assessing content moderation bias difficult. To study this bias, we conducted a digital ethnography of marginalized users on Reddit’s /r/FTM subreddit and Twitch’s “Just Chatting” and “Pools, Hot Tubs, and Beaches” categories, observing content moderation visibility in real time. We found that on Reddit, a text-based platform, platform tools make content moderation practices invisible to users, but moderators make their practices visible through communication with users. Yet on Twitch, a live chat and streaming platform, content moderation practices are visible in channel live chats, “unban appeal” streams, and “back from my ban” streams. Our ethnography shows how content moderation visibility differs in important ways between social media platforms, harming those who must see offensive content, and at other times, allowing for increased platform accountability.
  2. Volunteer moderators actively engage in online content management, such as removing toxic content and sanctioning anti-normative behaviors in user-governed communities. The synchronicity and ephemerality of live-streaming communities pose unique moderation challenges. Based on interviews with 21 volunteer moderators on Twitch, we mapped out 13 moderation strategies and presented them in relation to the bad act, enabling us to categorize from proactive and reactive perspectives and identify communicative and technical interventions. We found that the act of moderation involves highly visible and performative activities in the chat and invisible activities involving coordination and sanction. The juxtaposition of real-time individual decision-making with collaborative discussions and the dual nature of visible and invisible activities of moderators provide a unique lens into a role that relies heavily on both the social and technical. We also discuss how the affordances of live-streaming contribute to these unique activities.
  3. Rules and norms are critical to community governance. Live streaming communities like Twitch consist of thousands of micro-communities called channels. We conducted two studies to understand the micro-community rules. Study one suggests that Twitch users perceive that both rules transparency and communication frequency matter to channel vibe and frequency of harassment. Study two finds that the most popular channels have no channel or chat rules; among these having rules, rules encouraged by streamers are prominent. We explain why this may happen and how this contributes to community moderation and future research.
  4. Modern social media platforms like Twitch, YouTube, etc., embody an open space for content creation and consumption. However, an unintended consequence of such content democratization is the proliferation of toxicity and abuse that content creators get subjected to. Commercial and volunteer content moderators play an indispensable role in identifying bad actors and minimizing the scale and degree of harmful content. Moderation tasks are often laborious, complex, and even if semi-automated, they involve high-consequence human decisions that affect the safety and popular perception of the platforms. In this paper, through an interdisciplinary collaboration among researchers from social science, human-computer interaction, and visualization, we present a systematic understanding of how visual analytics can help in human-in-the-loop content moderation. We contribute a characterization of the data-driven problems and needs for proactive moderation and present a mapping between the needs and visual analytic tasks through a task abstraction framework. We discuss how the task abstraction framework can be used for transparent moderation, design interventions for moderators’ well-being, and ultimately, for creating futuristic human-machine interfaces for data-driven content moderation.
  5. Content moderation is an essential part of online community health and governance. While much of extant research is centered on what happens to the content, moderation also involves the management of violators. This study focuses on how moderators (mods) make decisions about their actions after the violation takes place but before the sanction by examining how they "profile" the violators. Through observations and interviews with volunteer mods on Twitch, we found that mods engage in a complex process of collaborative evidence collection and profile violators into different categories to decide the type and extent of punishment. Mods consider violators' characteristics as well as behavioral history and violation context before taking moderation action. The main purpose of the profiling was to avoid excessive punishment and aim to integrate violators more into the community. We discuss the contributions of profiling to moderation practice and suggest design mechanisms to facilitate mods' profiling processes.