skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A ‘KAHOOT!’ Approach: The Effectiveness of Game-Based Learning for an Advanced Placement Biology Class
Background.Keeping high school students engaged and motivated to learn complex scientific concepts can be difficult and challenging; this is especially true if the task feels daunting and unfamiliar to the students. Incorporating educational technology, such as KAHOOT, into the classroom can help students learn scientific material even when it is difficult. Aim. Our objective is to determine the effectiveness of gamification in an Advanced Placement Biology (AP biology) classroom by using the online game ‘KAHOOT!’ as a supplement to traditional teacher-centered learning. In addition, we determine the use of ‘KAHOOT!’ in enhancing student engagement and the learning experience for biology. Methods. A presentation on Transcription and Translation was given to a small group of high school AP Biology students ( n = 18, 18 women). After the presentation, the students were given 15 questions and twenty seconds to answer each question in the ‘KAHOOT!’ game. Both the students and the teacher were given a post-activity survey to assess their interest in the activity. Results. Based on the responses in the Students’ Survey, ‘KAHOOT!’ can be used as a gamified assessment tool to help students learn the topic of ‘Transcription and Translation’ by actively engaging them in a fun and exciting manner. Conclusion. The overall activity had a positive impact on the students and teacher as the students enjoyed learning Transcription and Translation through the use of ‘KAHOOT!’.  more » « less
Award ID(s):
1728858
PAR ID:
10121378
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Simulation & Gaming
Volume:
50
Issue:
6
ISSN:
1046-8781
Page Range / eLocation ID:
p. 832-847
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes how plan-do-study-act cycles engaged a classroom mentor teacher and student teacher in a professional collaboration that resulted in two inquiry activities for high-school geometry classes. The PDSA cycles were carried out in four high school geometry classes, each with 30 to 35 students, in a mid-Atlantic urban school district in the U.S. The four geometry classes were co-taught by the second and third authors of this paper. The data consisted of classroom documents (e.g., activity prompts, tasks), classroom observations, student feedback about activities, and monthly PDSA reports. The PDSA cycles had a direct effect on the professional learning of the teachers. The resultant classroom activities used a data collection approach to engaging students in inquiry to learn about trigonometry functions and density. Student learning behaviors were noticeably improved during these activities compared with traditional mathematics instruction. We concluded that the data collection sequence provided an accessible entry point for students to begin scientific inquiry in mathematics. The process opened the conceptual space for students to develop curiosity about mathematical phenomena and to explore their own research questions. The use of culturally relevant topics was especially compelling to students, and the open-ended nature of these exploratory activities allowed students to see mathematics through their own cultural lenses. 
    more » « less
  2. In our increasingly data-driven society, it is critical for high school students to learn to integrate computational thinking with other disciplines in solving real world problems. To address this need for the life sciences in particular, we have developed the Bio-CS Bridge, a modular computational system coupled with curriculum integrating biology and computer science. Our transdisciplinary team comprises university and high school faculty and students with expertise in biology, computer science, and education. Our approach engages students and teachers in scientific practices using biological data that they can collect themselves, and computational tools that they help to design and implement, to address the real-world problem of pollinator decline. Our modular approach to high school curriculum design provides teachers with the educational flexibility to address national and statewide biology and computer science standards for a wide range of learner types. We are using a teacher- leader model to disseminate the Bio-CS Bridge, whose components will be freely available online. 
    more » « less
  3. Incorporating games in teaching can help students retain material and become innovative problem solvers through engagement and enjoyment. Here we describe a new board game, “Taphonomy: Dead and Fossilized,” and its use as an active learning tool (material available at doi: 10.18738/T8/NQV2CU). The educational objective is to teach the player about taphonomy and fossilization, while the gameplay objective is to preserve and recover the best fossil collection. Through competitive gameplay, students learn how chemical, physical, and environmental factors, as well as physiology and discovery biases can influence an organism’s preservation and collection potential. The game is modeled after an Early Jurassic fossil deposit for scientific accuracy and relevance. The game was incorporated in undergraduate classroom activities in 20 colleges and universities across the United States. Survey results show that students and teachers were overwhelmingly positive about the game, stating that it was fun and helped them learn or strengthen their knowledge of fossilization. When analyzed statistically, we find that students’ self-reported learning outcomes and opinions vary most significantly with college year, major, ethnicity, and race. White students and geoscience or STEM majors reported the highest levels of learning and enjoyment, with minorities and non-STEM majors responding less favorably. We suggest this game is most advantageous for use in upper-level paleontology classrooms, although it is still beneficial at lower levels. It is critical to use this game as part of a larger lesson plan and tailor it to fit the needs of an individual classroom. Modifications for time and class size, as well as follow-up discussion questions, are included. 
    more » « less
  4. null (Ed.)
    The Game Play and Design Framework is a project-based instructional method to engage teachers and students with mathematics content by utilizing technology as a vehicle for game play and creation. In the authors’ prior work, they created a technology tool and game editing platform, the Wearable Learning Cloud Platform (WLCP), which enables teachers and students to play, create, and experience technology-augmented learning activities. This paper describes a 14-week Game Play and Design professional development program in which middle school teachers played, designed, tested, and implemented mathematics games in the classroom with their own students. Examples are included of teacher-created games, feedback from the students’ experience designing games, and evidence of student learning gains from playing teacher-created games. This work provides a pedagogical approach for educators and students that utilizes the benefits of mobile technologies and collaborative learning through games to develop students’ higher-level thinking in STEM classrooms. 
    more » « less
  5. null (Ed.)
    The Game Play and Design Framework is a project-based instructional method to engage teachers and students with mathematics content by utilizing technology as a vehicle for game play and creation. In the authors’ prior work, they created a technology tool and game editing platform, the Wearable Learning Cloud Platform (WLCP), which enables teachers and students to play, create, and experience technology-augmented learning activities. This paper describes a 14-week Game Play and Design professional development program in which middle school teachers played, designed, tested, and implemented mathematics games in the classroom with their own students. Examples are included of teacher-created games, feedback from the students’ experience designing games, and evidence of student learning gains from playing teacher-created games. This work provides a pedagogical approach for educators and students that utilizes the benefits of mobile technologies and collaborative learning through games to develop students’ higher-level thinking in STEM classrooms. 
    more » « less