skip to main content


Title: Draft Genome Sequence of Microbacterium sp. Gd 4-13, Isolated from Gydanskiy Peninsula Permafrost Sediments of Marine Origin
ABSTRACT Here, we report the draft genome sequence of Microbacterium sp. strain Gd 4-13, isolated from late Pleistocene permafrost of marine origin located on the Gydanskiy Peninsula. Genome sequence analysis was performed to understand strain survivability mechanisms under permafrost conditions and to expand biotechnology applications.  more » « less
Award ID(s):
1442262 1460058
NSF-PAR ID:
10121398
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
8
Issue:
40
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rokas, A (Ed.)
    Abstract Subtelomeres are dynamic genomic regions shaped by elevated rates of recombination, mutation, and gene birth/death. These processes contribute to formation of lineage-specific gene family expansions that commonly occupy subtelomeres across eukaryotes. Investigating the evolution of subtelomeric gene families is complicated by the presence of repetitive DNA and high sequence similarity among gene family members that prevents accurate assembly from whole genome sequences. Here, we investigated the evolution of the telomere-associated (TLO) gene family in Candida albicans using 189 complete coding sequences retrieved from 23 genetically diverse strains across the species. Tlo genes conformed to the 3 major architectural groups (α/β/γ) previously defined in the genome reference strain but significantly differed in the degree of within-group diversity. One group, Tloβ, was always found at the same chromosome arm with strong sequence similarity among all strains. In contrast, diverse Tloα sequences have proliferated among chromosome arms. Tloγ genes formed 7 primary clades that included each of the previously identified Tloγ genes from the genome reference strain with 3 Tloγ genes always found on the same chromosome arm among strains. Architectural groups displayed regions of high conservation that resolved newly identified functional motifs, providing insight into potential regulatory mechanisms that distinguish groups. Thus, by resolving intraspecies subtelomeric gene variation, it is possible to identify previously unknown gene family complexity that may underpin adaptive functional variation. 
    more » « less
  2. Background Cellulolytic, hemicellulolytic, and amylolytic (CHA) enzyme-producing halophiles are understudied. The recently defined taxon Iocasia fonsfrigidae consists of one well-described anaerobic bacterial strain: NS-1 T . Prior to characterization of strain NS-1 T , an isolate designated Halocella sp. SP3-1 was isolated and its genome was published. Based on physiological and genetic comparisons, it was suggested that Halocella sp. SP3-1 may be another isolate of I. fronsfrigidae . Despite being geographic variants of the same species, data indicate that strain SP3-1 exhibits genetic, genomic, and physiological characteristics that distinguish it from strain NS-1 T . In this study, we examine the halophilic and alkaliphilic nature of strain SP3-1 and the genetic substrates underlying phenotypic differences between strains SP3-1 and NS-1 T with focus on sugar metabolism and CHA enzyme expression. Methods Standard methods in anaerobic cell culture were used to grow strains SP3-1 as well as other comparator species. Morphological characterization was done via electron microscopy and Schaeffer-Fulton staining. Data for sequence comparisons ( e.g. , 16S rRNA) were retrieved via BLAST and EzBioCloud. Alignments and phylogenetic trees were generated via CLUTAL_X and neighbor joining functions in MEGA (version 11). Genomes were assembled/annotated via the Prokka annotation pipeline. Clusters of Orthologous Groups (COGs) were defined by eegNOG 4.5. DNA-DNA hybridization calculations were performed by the ANI Calculator web service. Results Cells of strain SP3-1 are rods. SP3-1 cells grow at NaCl concentrations of 5-30% (w/v). Optimal growth occurs at 37 °C, pH 8.0, and 20% NaCl (w/v). Although phylogenetic analysis based on 16S rRNA gene indicates that strain SP3-1 belongs to the genus Iocasia with 99.58% average nucleotide sequence identity to Iocasia fonsfrigida NS-1 T , strain SP3-1 is uniquely an extreme haloalkaliphile. Moreover, strain SP3-1 ferments D-glucose to acetate, butyrate, carbon dioxide, hydrogen, ethanol, and butanol and will grow on L-arabinose, D-fructose, D-galactose, D-glucose, D-mannose, D-raffinose, D-xylose, cellobiose, lactose, maltose, sucrose, starch, xylan and phosphoric acid swollen cellulose (PASC). D-rhamnose, alginate, and lignin do not serve as suitable culture substrates for strain SP3-1. Thus, the carbon utilization profile of strain SP3-1 differs from that of I. fronsfrigidae strain NS-1 T . Differences between these two strains are also noted in their lipid composition. Genomic data reveal key differences between the genetic profiles of strain SP3-1 and NS-1 T that likely account for differences in morphology, sugar metabolism, and CHA-enzyme potential. Important to this study, I. fonsfrigidae SP3-1 produces and extracellularly secretes CHA enzymes at different levels and composition than type strain NS-1 T . The high salt tolerance and pH range of SP3-1 makes it an ideal candidate for salt and pH tolerant enzyme discovery. 
    more » « less
  3. Koomey, Michael (Ed.)
    ABSTRACT Elizabethkingia anophelis is an emerging global multidrug-resistant opportunistic pathogen. We assessed the diversity among 13 complete genomes and 23 draft genomes of E. anophelis strains derived from various environmental settings and human infections from different geographic regions around the world from 1950s to the present. Putative integrative and conjugative elements (ICEs) were identified in 31/36 (86.1%) strains in the study. A total of 52 putative ICEs (including eight degenerated elements lacking integrases) were identified and categorized into three types based on the architecture of the conjugation module and the phylogeny of the relaxase, coupling protein, TraG, and TraJ protein sequences. The type II and III ICEs were found to integrate adjacent to tRNA genes, while type I ICEs integrate into intergenic regions or into a gene. The ICEs carry various cargo genes, including transcription regulator genes and genes conferring antibiotic resistance. The adaptive immune CRISPR-Cas system was found in nine strains, including five strains in which CRISPR-Cas machinery and ICEs coexist at different locations on the same chromosome. One ICE-derived spacer was present in the CRISPR locus in one strain. ICE distribution in the strains showed no geographic or temporal patterns. The ICEs in E. anophelis differ in architecture and sequence from CTnDOT, a well-studied ICE prevalent in Bacteroides spp. The categorization of ICEs will facilitate further investigations of the impact of ICE on virulence, genome epidemiology, and adaptive genomics of E. anophelis . IMPORTANCE Elizabethkingia anophelis is an opportunistic human pathogen, and the genetic diversity between strains from around the world becomes apparent as more genomes are sequenced. Genome comparison identified three types of putative ICEs in 31 of 36 strains. The diversity of ICEs suggests that they had different origins. One of the ICEs was discovered previously from a large E. anophelis outbreak in Wisconsin in the United States; this ICE has integrated into the mutY gene of the outbreak strain, creating a mutator phenotype. Similar to ICEs found in many bacterial species, ICEs in E. anophelis carry various cargo genes that enable recipients to resist antibiotics and adapt to various ecological niches. The adaptive immune CRISPR-Cas system is present in nine of 36 strains. An ICE-derived spacer was found in the CRISPR locus in a strain that has no ICE, suggesting a past encounter and effective defense against ICE. 
    more » « less
  4. Abstract

    Infections by maternally inherited bacterial endosymbionts, especially Wolbachia, are common in insects and other invertebrates but infection dynamics across species ranges are largely under studied. Specifically, we lack a broad understanding of the origin of Wolbachia infections in novel hosts, and the historical and geographical dynamics of infections that are critical for identifying the factors governing their spread. We used Genotype-by-Sequencing data from previous population genomics studies for range-wide surveys of Wolbachia presence and genetic diversity in North American butterflies of the genus Lycaeides. As few as one sequence read identified by assembly to a Wolbachia reference genome provided high accuracy in detecting infections in host butterflies as determined by confirmatory PCR tests, and maximum accuracy was achieved with a threshold of only 5 sequence reads per host individual. Using this threshold, we detected Wolbachia in all but 2 of the 107 sampling localities spanning the continent, with infection frequencies within populations ranging from 0% to 100% of individuals, but with most localities having high infection frequencies (mean = 91% infection rate). Three major lineages of Wolbachia were identified as separate strains that appear to represent 3 separate invasions of Lycaeides butterflies by Wolbachia. Overall, we found extensive evidence for acquisition of Wolbachia through interspecific transfer between host lineages. Strain wLycC was confined to a single butterfly taxon, hybrid lineages derived from it, and closely adjacent populations in other taxa. While the other 2 strains were detected throughout the rest of the continent, strain wLycB almost always co-occurred with wLycA. Our demographic modeling suggests wLycB is a recent invasion. Within strain wLycA, the 2 most frequent haplotypes are confined almost exclusively to separate butterfly taxa with haplotype A1 observed largely in Lycaeides melissa and haplotype A2 observed most often in Lycaeides idas localities, consistent with either cladogenic mode of infection acquisition from a common ancestor or by hybridization and accompanying mutation. More than 1 major Wolbachia strain was observed in 15 localities. These results demonstrate the utility of using resequencing data from hosts to quantify Wolbachia genetic variation and infection frequency and provide evidence of multiple colonizations of novel hosts through hybridization between butterfly lineages and complex dynamics between Wolbachia strains.

     
    more » « less
  5. ABSTRACT Sphingobium sp. strain AEW4 is a novel isolate from rhizosphere soil attached to the root of the American beachgrass Ammophila breviligulata . The genomic sequence consisted of 4,678,518 bp and 4,428 protein-coding sequences. Here we report the draft genome sequence of this strain and some initial insights on its plant growth-promoting capabilities. 
    more » « less