skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Architectural groups of a subtelomeric gene family evolve along distinct paths in Candida albicans
Abstract Subtelomeres are dynamic genomic regions shaped by elevated rates of recombination, mutation, and gene birth/death. These processes contribute to formation of lineage-specific gene family expansions that commonly occupy subtelomeres across eukaryotes. Investigating the evolution of subtelomeric gene families is complicated by the presence of repetitive DNA and high sequence similarity among gene family members that prevents accurate assembly from whole genome sequences. Here, we investigated the evolution of the telomere-associated (TLO) gene family in Candida albicans using 189 complete coding sequences retrieved from 23 genetically diverse strains across the species. Tlo genes conformed to the 3 major architectural groups (α/β/γ) previously defined in the genome reference strain but significantly differed in the degree of within-group diversity. One group, Tloβ, was always found at the same chromosome arm with strong sequence similarity among all strains. In contrast, diverse Tloα sequences have proliferated among chromosome arms. Tloγ genes formed 7 primary clades that included each of the previously identified Tloγ genes from the genome reference strain with 3 Tloγ genes always found on the same chromosome arm among strains. Architectural groups displayed regions of high conservation that resolved newly identified functional motifs, providing insight into potential regulatory mechanisms that distinguish groups. Thus, by resolving intraspecies subtelomeric gene variation, it is possible to identify previously unknown gene family complexity that may underpin adaptive functional variation.  more » « less
Award ID(s):
2046863 1638999
PAR ID:
10397789
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Rokas, A
Date Published:
Journal Name:
G3 Genes|Genomes|Genetics
Volume:
12
Issue:
12
ISSN:
2160-1836
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kim, J (Ed.)
    Abstract Though natural systems harbor genetic and phenotypic variation, research in model organisms is often restricted to a reference strain. Focusing on a reference strain yields a great depth of knowledge but potentially at the cost of breadth of understanding. Furthermore, tools developed in the reference context may introduce bias when applied to other strains, posing challenges to defining the scope of variation within model systems. Here, we evaluate how genetic differences among 5 wild Caenorhabditis elegans strains affect gene expression and its quantification, in general and after induction of the RNA interference (RNAi) response. Across strains, 34% of genes were differentially expressed in the control condition, including 411 genes that were not expressed at all in at least 1 strain; 49 of these were unexpressed in reference strain N2. Reference genome mapping bias caused limited concern: despite hyperdiverse hotspots throughout the genome, 92% of variably expressed genes were robust to mapping issues. The transcriptional response to RNAi was highly strain- and target-gene-specific and did not correlate with RNAi efficiency, as the 2 RNAi-insensitive strains showed more differentially expressed genes following RNAi treatment than the RNAi-sensitive reference strain. We conclude that gene expression, generally and in response to RNAi, differs across C. elegans strains such that the choice of strain may meaningfully influence scientific inferences. Finally, we introduce a resource for querying gene expression variation in this dataset at https://wildworm.biosci.gatech.edu/rnai/. 
    more » « less
  2. Hayer, Juliette (Ed.)
    Staphylococcus aureus causes both hospital- and community-acquired infections in humans worldwide. Due to the high incidence of infection, S. aureus is also one of the most sampled and sequenced pathogens today, providing an outstanding resource to understand variation at the bacterial subspecies level. We processed and downsampled 83,383 public S. aureus Illumina whole-genome shotgun sequences and 1,263 complete genomes to produce 7,954 representative substrains. Pairwise comparison of average nucleotide identity revealed a natural boundary of 99.5% that could be used to define 145 distinct strains within the species. We found that intermediate frequency genes in the pangenome (present in 10%–95% of genomes) could be divided into those closely linked to strain background (“strain-concentrated”) and those highly variable within strains (“strain-diffuse”). Non-core genes had different patterns of chromosome location. Notably, strain-diffuse genes were associated with prophages; strain-concentrated genes were associated with the vSaβ genome island and rare genes (<10% frequency) concentrated near the origin of replication. Antibiotic resistance genes were enriched in the strain-diffuse class, while virulence genes were distributed between strain-diffuse, strain-concentrated, core, and rare classes. This study shows how different patterns of gene movement help create strains as distinct subspecies entities and provide insight into the diverse histories of important S. aureus functions. 
    more » « less
  3. Giraud, Tatiana (Ed.)
    Abstract The Global Panzootic Lineage (GPL) of Batrachochytrium dendrobatidis (Bd) has been described as a main driver of amphibian extinctions. Pathogen studies have benefited from three Bd-GPL strain genomes, but identifying the genetic and molecular features that distinguish the B. dendrobatidis lineages requires additional high-quality genomes from diverse lineages. We sequenced and assembled genomes with Oxford Nanopore Technologies to produce assemblies of three Bd-BRAZIL isolates and one nonpathogen outgroup species Polyrhizophydium stewartii. The Bd-BRAZIL assembly sizes ranged between 22.0 and 26.1 Mb with 8,495 to 8,620 predicted protein-coding genes. We sought to categorize the pangenome of the species by identifying homologous genes across the sampled genomes as either being core and present in all strains, or accessory and shared among strains in a lineage, an analysis that has not yet been conducted on B. dendrobatidis and its lineages. We identified a core genome consisting of 6,278 gene families, and an accessory genome of 202 Bd-BRAZIL and 172 Bd-GPL specific gene families. We discovered copy number differences in pathogenicity gene families: M36 Peptidases, Crinkler Necrosis genes, Aspartyl Peptidases, Carbohydrate-Binding Module-18 genes, and S41 Proteases, between Bd-BRAZIL and Bd-GPL strains. Comparison of B. dendrobatidis and two closely related saprophytic species identified differences in protein sequence and domain counts for M36 and CBM18 families respectively. Our pangenome analysis of lineage-specific gene content led us to explore how the selection of the reference genome affects recovery of RNAseq transcripts when comparing different strains. We tested the hypothesis that genomic variation among Bd-GPL and Bd-BRAZIL lineages can impact transcript count data by comparing results with our new Bd-BRAZIL genomes as the reference genomes. Our analysis examines the genomic variation between strains in Bd-BRAZIL and Bd-GPL and offers insights into the application of these high-quality reference genomes resources for future studies. 
    more » « less
  4. Koomey, Michael (Ed.)
    ABSTRACT Elizabethkingia anophelis is an emerging global multidrug-resistant opportunistic pathogen. We assessed the diversity among 13 complete genomes and 23 draft genomes of E. anophelis strains derived from various environmental settings and human infections from different geographic regions around the world from 1950s to the present. Putative integrative and conjugative elements (ICEs) were identified in 31/36 (86.1%) strains in the study. A total of 52 putative ICEs (including eight degenerated elements lacking integrases) were identified and categorized into three types based on the architecture of the conjugation module and the phylogeny of the relaxase, coupling protein, TraG, and TraJ protein sequences. The type II and III ICEs were found to integrate adjacent to tRNA genes, while type I ICEs integrate into intergenic regions or into a gene. The ICEs carry various cargo genes, including transcription regulator genes and genes conferring antibiotic resistance. The adaptive immune CRISPR-Cas system was found in nine strains, including five strains in which CRISPR-Cas machinery and ICEs coexist at different locations on the same chromosome. One ICE-derived spacer was present in the CRISPR locus in one strain. ICE distribution in the strains showed no geographic or temporal patterns. The ICEs in E. anophelis differ in architecture and sequence from CTnDOT, a well-studied ICE prevalent in Bacteroides spp. The categorization of ICEs will facilitate further investigations of the impact of ICE on virulence, genome epidemiology, and adaptive genomics of E. anophelis . IMPORTANCE Elizabethkingia anophelis is an opportunistic human pathogen, and the genetic diversity between strains from around the world becomes apparent as more genomes are sequenced. Genome comparison identified three types of putative ICEs in 31 of 36 strains. The diversity of ICEs suggests that they had different origins. One of the ICEs was discovered previously from a large E. anophelis outbreak in Wisconsin in the United States; this ICE has integrated into the mutY gene of the outbreak strain, creating a mutator phenotype. Similar to ICEs found in many bacterial species, ICEs in E. anophelis carry various cargo genes that enable recipients to resist antibiotics and adapt to various ecological niches. The adaptive immune CRISPR-Cas system is present in nine of 36 strains. An ICE-derived spacer was found in the CRISPR locus in a strain that has no ICE, suggesting a past encounter and effective defense against ICE. 
    more » « less
  5. Genetically modified organisms are commonly used in disease research and agriculture but the precise genomic alterations underlying transgenic mutations are often unknown. The position and characteristics of transgenes, including the number of independent insertions, influences the expression of both transgenic and wild-type sequences. We used long-read, Oxford Nanopore Technologies (ONT) to sequence and assemble two transgenic strains ofCaenorhabditis eleganscommonly used in the research of neurodegenerative diseases: BY250 (pPdat-1::GFP) and UA44 (GFP and humanα-synuclein), a model for Parkinson’s research. After scaffolding to the reference, the final assembled sequences were ∼102 Mb with N50s of 17.9 Mb and 18.0 Mb, respectively, and L90s of six contiguous sequences, representing chromosome-level assemblies. Each of the assembled sequences contained more than 99.2% of the Nematoda BUSCO genes found in theC. elegansreference and 99.5% of the annotatedC. elegansreference protein-coding genes. We identified the locations of the transgene insertions and confirmed that all transgene sequences were inserted in intergenic regions, leaving the organismal gene content intact. The transgenicC. elegansgenomes presented here will be a valuable resource for Parkinson’s research as well as other neurodegenerative diseases. Our work demonstrates that long-read sequencing is a fast, cost-effective way to assemble genome sequences and characterize mutant lines and strains. 
    more » « less