Metal complexes stabilized by appropriate ligands, particularly CuI/L systems, have proven powerful for the controlled polymerization of acrylates and other monomers by atom transfer radical polymerization (ATRP). The polymerization of acrylates by CuI/L systems, however, is haunted by interference of catalyzed radical termination (CRT), which reduces the chain-end fidelity. Other monomers do not appear to be affected by this phenomenon to any significant extent. The phenomenon appears to involve the formation of an organometallic intermediate by reversible radical trapping, as in organometallic mediated radical polymerization (OMRP). We summarize here the current knowledge and the efforts made to elucidate the CRT pathway and products.
more »
« less
Impact of Catalyzed Radical Termination (CRT) and Reductive Radical Termination (RRT) in Metal-Mediated Radical Polymerization Processes: Impact of Catalyzed Radical Termination (CRT) and Reductive Radical Termination (RRT) in Metal-Mediated Radical Polymerization Processes
- Award ID(s):
- 1707490
- PAR ID:
- 10121519
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- European Journal of Inorganic Chemistry
- Volume:
- 2019
- Issue:
- 42
- ISSN:
- 1434-1948; EJIC
- Page Range / eLocation ID:
- p. 4489-4499
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract DMSO, an interesting solvent for copper‐catalyzed living radical polymerization (LRP) mediated by disproportionation, does not exhibit the greatest disproportionation of Cu(I)X into Cu(0) and Cu(II)X2. Under suitable conditions, DMSO provides 100% conversion and absence of termination, facilitating the development of complex‐architecture methodologies by living and immortal polymerizations. The mechanism yielding this level of precision is being investigated. Here we compare Cu(0)‐wire‐catalyzed LRP of methyl acrylate mediated by disproportionating ligands tris(2‐dimethylaminoethyl)amine, Me6‐TREN, tris(2‐aminoethyl)amine, TREN, and Me6‐TREN/TREN = 1/1 in presence of eight disproportionating solvents, some more efficient than DMSO in disproportionation. Unexpectedly, we observed that all solvents increased the rate of polymerization when monomer concentration decreased. This reversed trend from that of conventional LRPs demonstrates catalytic effect for disproportionating solvents. Above a certain concentration, the classic concentration‐rate dependence was observed. The external order of reaction of the apparent rate constant of propagation,kpappon solvent concentration demonstrated the highest order of reaction for the least disproportionating DMSO. Of all solvents investigated, DMSO has the highest ability to stabilize Cu(0) nanoparticles and therefore, yields the highest activity of Cu(0) nanoparticles rather than their greatest concentration. The implications of the catalytic effect of solvent in this and other reactions were discussed.more » « less
-
Abstract The photoATRP of methyl acrylate (MA) is investigated using riboflavin (RF) and CuBr2/Me6TREN as a dual catalyst system under green LED irradiation (λ ≈ 525 nm). Both RF and CuBr2/Me6TREN enhanced oxygen tolerance, enabling effective ATRP in the presence of residual oxygen. High molar mass polymers (up toMn ≈ 129 000 g·mol−1) with low dispersity (Đ≤ 1.16) are prepared, and chain‐end fidelity is confirmed through successful chain extension. The molecular masses of the obtained polymer increased linearly with conversion and showed high initiation efficiency. Mechanistic studies by laser flash photolysis reveal that the predominant activator generation mechanism is reductive quenching of RF by Me6TREN (83%, under [CuBr2]/[Me6TREN] = 1/3 condition), supported by polymerization kinetics and thermodynamic calculations.more » « less
An official website of the United States government
