- Award ID(s):
- 1803256
- Publication Date:
- NSF-PAR ID:
- 10121544
- Journal Name:
- Energy & Environmental Science
- Volume:
- 12
- Issue:
- 7
- Page Range or eLocation-ID:
- 2273 to 2285
- ISSN:
- 1754-5692
- Sponsoring Org:
- National Science Foundation
More Like this
-
Hydrated vanadium pentoxide (VOH) can deliver a gravimetric capacity as high as 400 mA h g −1 owing to the variable valence states of the V cation from 5+ to 3+ in an aqueous zinc ion battery. The incorporation of divalent transition metal cations has been demonstrated to overcome the structural instability, sluggish kinetics, fast capacity degradation, and serious polarization. The current study reveals that the catalytic effects of transition metal cations are probably the key to the significantly improved electrochemical properties and battery performance because of the higher covalent character of 55% in the Cu–O bond in comparison with 32% in the Mg–O bond in the respective samples. Cu( ii ) pre-inserted VOH (CuVOH) possesses a significantly enhanced intercalation storage capacity, an increased discharge voltage, great transport properties, and reduced polarization, while both VOH and Mg( ii ) pre-inserted VOH (MgVOH) demonstrate similar electrochemical properties and performances, indicating that the incorporation of Mg cations has little or no impact. For example, CuVOH has a redox voltage gap of 0.02 V, much smaller than 0.25 V for VOH and 0.27 V for MgVOH. CuVOH shows an enhanced exchange current density of 0.23 A g −1 , compared to 0.20 Amore »
-
Abstract Currently, there is considerable interest in developing advanced rechargeable batteries that boast efficient distribution of electricity and economic feasibility for use in large-scale energy storage systems. Rechargeable aqueous zinc batteries are promising alternatives to lithium-ion batteries in terms of rate performance, cost, and safety. In this investigation, we employ Cu3(HHTP)2, a two-dimensional (2D) conductive metal-organic framework (MOF) with large one-dimensional channels, as a zinc battery cathode. Owing to its unique structure, hydrated Zn2+ions which are inserted directly into the host structure, Cu3(HHTP)2, allow high diffusion rate and low interfacial resistance which enable the Cu3(HHTP)2cathode to follow the intercalation pseudocapacitance mechanism. Cu3(HHTP)2exhibits a high reversible capacity of 228 mAh g−1at 50 mA g−1. At a high current density of 4000 mA g−1(~18 C), 75.0% of the initial capacity is maintained after 500 cycles. These results provide key insights into high-performance, 2D conductive MOF designs for battery electrodes.
-
Abstract Ammonium vanadate with bronze structure (NH 4 V 4 O 10 ) is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost. However, the extraction of $${\text{NH}}_{{4}}^{ + }$$ NH 4 + at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation. In this work, partial $${\text{NH}}_{{4}}^{ + }$$ NH 4 + ions were pre-removed from NH 4 V 4 O 10 through heat treatment; NH 4 V 4 O 10 nanosheets were directly grown on carbon cloth through hydrothermal method. Deficient NH 4 V 4 O 10 (denoted as NVO), with enlarged interlayer spacing, facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure. The NVO nanosheets delivered a high specific capacity of 457 mAh g −1 at a current density of 100 mA g −1 and a capacity retention of 81% over 1000 cycles at 2 A g −1 . The initial Coulombic efficiency of NVO could reach up to 97% compared to 85% of NH 4 V 4 O 10 and maintain almost 100% during cycling, indicating the high reaction reversibility in NVO electrode.
-
Aqueous zinc ion batteries (ZIBs) are emerging as a highly promising alternative technology for grid-scale applications where high safety, environmental-friendliness, and high specific capacities are needed. It remains a significant challenge, however, to develop a cathode with a high rate capability and long-term cycling stability. Here, we demonstrate diffusion-controlled behavior in the intercalation of zinc ions into highly porous, Mn 4+ -rich, and low-band-gap Ni x Mn 3−x O 4 nano-particles with a carbon matrix formed in situ (with the composite denoted as Ni x Mn 3−x O 4 @C, x = 1), which exhibits superior rate capability (139.7 and 98.5 mA h g −1 at 50 and 1200 mA g −1 , respectively) and outstanding cycling stability (128.8 mA h g −1 remaining at 400 mA g −1 after 850 cycles). Based on the obtained experimental results and density functional theory (DFT) calculations, cation-site Ni substitution combined with a sufficient doping concentration can decrease the band gap and effectively improve the electronic conductivity in the crystal. Furthermore, the amorphous carbon shell and highly porous Mn 4+ -rich structure lead to fast electron transport and short Zn 2+ diffusion paths in a mild aqueous electrolyte. This study provides an examplemore »
-
Aqueous zinc-ion batteries (AZIBs) are promising candidates for large-scale electrical energy storage due to the inexpensive, safe, and non-toxic nature of zinc. One key area that requires further development is electrode materials that store Zn 2+ ions with high reversibility and fast kinetics. To determine the viability of low-cost organosulfur compounds as OEMs for AZIBs, we investigate how structural modification affects electrochemical performance in Zn-thiolate complexes 1 and 2. Remarkably, modification of one thiolate in 1 to sulfide in 2 reduces the voltage hysteresis from 1.04 V to 0.15 V. While 1 exhibits negligible specific capacity due to the formation of insulating DMcT polymers, 2 delivers a capacity of 107 mA h g −1 with a primary discharge plateau at 1.1 V vs. Zn 2+ /Zn. Spectroscopic studies of 2 suggest a Zn 2+ and H + co-insertion mechanism with Zn 2+ as the predominant charge carrier. Capacity fading in Zn-2 cells likely results from the formation of (i) soluble H + insertion products and (ii) non-redox-active side products. Increasing electrolyte concentration and using a Nafion membrane significantly enhances the stability of 2 by suppressing H + insertion. Our findings provide insight into the molecular design strategies to reduce themore »