skip to main content

Title: Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries
Hydrated vanadium pentoxide (VOH) can deliver a gravimetric capacity as high as 400 mA h g −1 owing to the variable valence states of the V cation from 5+ to 3+ in an aqueous zinc ion battery. The incorporation of divalent transition metal cations has been demonstrated to overcome the structural instability, sluggish kinetics, fast capacity degradation, and serious polarization. The current study reveals that the catalytic effects of transition metal cations are probably the key to the significantly improved electrochemical properties and battery performance because of the higher covalent character of 55% in the Cu–O bond in comparison with 32% in the Mg–O bond in the respective samples. Cu( ii ) pre-inserted VOH (CuVOH) possesses a significantly enhanced intercalation storage capacity, an increased discharge voltage, great transport properties, and reduced polarization, while both VOH and Mg( ii ) pre-inserted VOH (MgVOH) demonstrate similar electrochemical properties and performances, indicating that the incorporation of Mg cations has little or no impact. For example, CuVOH has a redox voltage gap of 0.02 V, much smaller than 0.25 V for VOH and 0.27 V for MgVOH. CuVOH shows an enhanced exchange current density of 0.23 A g −1 , compared to 0.20 A more » g −1 for VOH and 0.19 A g −1 for MgVOH. CuVOH delivers a zinc ion storage capacity of 379 mA h g −1 , higher than 349 mA h g −1 for MgVOH and 337 mA h g −1 for VOH at 0.5 A g −1 . CuVOH shows an energy efficiency of 72%, superior to 53% for VOH and 55% for MgVOH. All of the results suggest that pre-inserted Cu( ii ) cations played a critical role in catalyzing the zinc ion intercalation reaction, while the Mg( ii ) cations did not exert a detectable catalytic effect. « less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1803256
Publication Date:
NSF-PAR ID:
10185790
Journal Name:
Journal of Materials Chemistry A
Volume:
8
Issue:
16
Page Range or eLocation-ID:
7713 to 7723
ISSN:
2050-7488
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrated vanadates are promising layered cathodes for aqueous zinc-ion batteries owing to their specific capacity as high as 400 mA h g −1 ; however, the structural instability causes serious cycling degradation through repeated intercalation/deintercalation reactions. This study reveals the chemically inserted Mn( ii ) cations act as structural pillars, expand the interplanar spacing, connect the adjacent layers and partially reduce pentavalent vanadium cations to tetravalent. The expanded interplanar spacing to 12.9 Å reduces electrostatic interactions, and transition metal cations collectively promote and catalyze fast and more zinc ion intercalation at higher discharge current densities with much enhanced reversibility and cycling stability. Manganese expanded hydrated vanadate (MnVO) delivers a specific capacity of 415 mA h g −1 at a current density of 50 mA g −1 and 260 mA h g −1 at 4 A g −1 with a capacity retention of 92% over 2000 cycles. The energy efficiency increases from 41% for hydrated vanadium pentoxide (VOH) to 70% for MnVO at 4 A g −1 and the open circuit voltage remains at 85% of the cutoff voltage in the MnVO battery on the shelf after 50 days. Expanded hydrated vanadate with other transition metal cations for high-performance aqueous zinc-ionmore »batteries is also obtained, suggesting it is a general strategy for exploiting high-performance cathodes for multi-valent ion batteries.« less
  2. Aqueous zinc-ion batteries (AZIBs) are promising candidates for large-scale electrical energy storage due to the inexpensive, safe, and non-toxic nature of zinc. One key area that requires further development is electrode materials that store Zn 2+ ions with high reversibility and fast kinetics. To determine the viability of low-cost organosulfur compounds as OEMs for AZIBs, we investigate how structural modification affects electrochemical performance in Zn-thiolate complexes 1 and 2. Remarkably, modification of one thiolate in 1 to sulfide in 2 reduces the voltage hysteresis from 1.04 V to 0.15 V. While 1 exhibits negligible specific capacity due to the formation of insulating DMcT polymers, 2 delivers a capacity of 107 mA h g −1 with a primary discharge plateau at 1.1 V vs. Zn 2+ /Zn. Spectroscopic studies of 2 suggest a Zn 2+ and H + co-insertion mechanism with Zn 2+ as the predominant charge carrier. Capacity fading in Zn-2 cells likely results from the formation of (i) soluble H + insertion products and (ii) non-redox-active side products. Increasing electrolyte concentration and using a Nafion membrane significantly enhances the stability of 2 by suppressing H + insertion. Our findings provide insight into the molecular design strategies to reduce themore »polarization potential and improve the cycling stability of the thiolate/disulfide redox couple in aqueous battery systems.« less
  3. Abstract

    Currently, there is considerable interest in developing advanced rechargeable batteries that boast efficient distribution of electricity and economic feasibility for use in large-scale energy storage systems. Rechargeable aqueous zinc batteries are promising alternatives to lithium-ion batteries in terms of rate performance, cost, and safety. In this investigation, we employ Cu3(HHTP)2, a two-dimensional (2D) conductive metal-organic framework (MOF) with large one-dimensional channels, as a zinc battery cathode. Owing to its unique structure, hydrated Zn2+ions which are inserted directly into the host structure, Cu3(HHTP)2, allow high diffusion rate and low interfacial resistance which enable the Cu3(HHTP)2cathode to follow the intercalation pseudocapacitance mechanism. Cu3(HHTP)2exhibits a high reversible capacity of 228 mAh g−1at 50 mA g−1. At a high current density of 4000 mA g−1(~18 C), 75.0% of the initial capacity is maintained after 500 cycles. These results provide key insights into high-performance, 2D conductive MOF designs for battery electrodes.

  4. Abstract Ammonium vanadate with bronze structure (NH 4 V 4 O 10 ) is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost. However, the extraction of $${\text{NH}}_{{4}}^{ + }$$ NH 4 + at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation. In this work, partial $${\text{NH}}_{{4}}^{ + }$$ NH 4 + ions were pre-removed from NH 4 V 4 O 10 through heat treatment; NH 4 V 4 O 10 nanosheets were directly grown on carbon cloth through hydrothermal method. Deficient NH 4 V 4 O 10 (denoted as NVO), with enlarged interlayer spacing, facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure. The NVO nanosheets delivered a high specific capacity of 457 mAh g −1 at a current density of 100 mA g −1 and a capacity retention of 81% over 1000 cycles at 2 A g −1 . The initial Coulombic efficiency of NVO could reach up to 97% compared to 85% of NH 4 V 4 O 10 and maintain almost 100% during cycling, indicating the high reaction reversibility in NVO electrode.
  5. V 2 O 5 is of interest as a Mg intercalation electrode material for Mg batteries, both in its thermodynamically stable layered polymorph (α-V 2 O 5 ) and in its metastable tunnel structure (ζ-V 2 O 5 ). However, such oxide cathodes typically display poor Mg insertion/removal kinetics, with large voltage hysteresis. Herein, we report the synthesis and evaluation of nanosized ( ca . 100 nm) ζ-V 2 O 5 in Mg-ion cells, which displays significantly enhanced electrochemical kinetics compared to microsized ζ-V 2 O 5 . This effect results in a significant boost in stable discharge capacity (130 mA h g −1 ) compared to bulk ζ-V 2 O 5 (70 mA h g −1 ), with reduced voltage hysteresis (1.0 V compared to 1.4 V). This study reveals significant advancements in the use of ζ-V 2 O 5 for Mg-based energy storage and yields a better understanding of the kinetic limiting factors for reversible magnesiation reactions into such phases.