skip to main content


Title: Sulfur-deficient MoS 2 grown inside hollow mesoporous carbon as a functional polysulfide mediator
Lithium–sulfur (Li–S) batteries are regarded as one of the most promising next-generation electrochemical cells. However, shuttling of lithium polysulfide intermediates and sluggish kinetics in random deposition of lithium sulfide (Li 2 S) have significantly degraded their capacity, rate and cycling performance. Herein, few-layered MoS 2 nanosheets enriched with sulfur vacancies are anchored inside hollow mesoporous carbon (MoS 2−x /HMC) via S–C bonding and proposed as a novel functional mediator for Li–S batteries. Ultrathin MoS 2 sheets with abundant sulfur vacancies have strong chemical affinity to polysulfides and in the meantime catalyze their fast redox conversion with enhanced reaction kinetics as proved by experimental observations and first-principles density functional theory (DFT) calculations. At a current density of 1C, the MoS 2−x /HMC-S composite cathode exhibits a high initial capacity of 945 mA h g −1 with a high retained capacity of 526 mA h g −1 and a coulombic efficiency of nearly 100% after 500 cycles. The present work sheds light on the design of novel functional electrodes for next-generation electrochemical cells based on a simple yet effective vacancy engineering strategy.  more » « less
Award ID(s):
1803256
NSF-PAR ID:
10121546
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
7
Issue:
19
ISSN:
2050-7488
Page Range / eLocation ID:
12068 to 12074
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The shuttling of polysulfides with sluggish redox kinetics has severely retarded the advancement of lithium–sulfur (Li–S) batteries. In this work oxygen-deficient titanium dioxide (TiO 2 ) has been investigated as a novel functional host for Li–S batteries. Experimental and first-principles density functional theory (DFT) studies reveal that oxygen vacancies help to reduce polysulfide shuttling and catalyze the redox kinetics of sulfur/polysulfides during cycling. Consequently, the resulting TiO 2 /S composite cathode manifests superior electrochemical properties in terms of high capacity (1472 mA h g −1 at 0.2C), outstanding rate capability (571 mA h g −1 at 2C), and excellent cycling properties (900 mA h g −1 over 100 cycles at 0.2C). The present strategy offers a viable way through vacancy engineering for the design and optimization of high-performance electrodes for advanced Li–S batteries and other electrochemical devices. 
    more » « less
  2. Rechargeable lithium–sulfur batteries have emerged as a viable technology for next generation electrochemical energy storage, and the sulfur cathode plays a critical role in determining the device performance. In this study, we prepared functional composites based on polypyrrole-coated MnO 2 nanotubes as a highly efficient sulfur host (sulfur mass loading 63.5%). The hollow interior of the MnO 2 nanotubes not only allowed for accommodation of volumetric changes of sulfur particles during the cycling process, but also confined the diffusion of lithium polysulfides by physical restriction and chemical adsorption, which minimized the loss of polysulfide species. In addition, the polypyrrole outer layer effectively enhanced the electrical conductivity of the cathode to facilitate ion and electron transport. The as-prepared MnO 2 -PPy-S composite delivered an initial specific capacity of 1469 mA h g −1 and maintained an extremely stable cycling performance, with a small capacity decay of merely 0.07% per cycle at 0.2C within 500 cycles, a high average coulombic efficiency of 95.7% and an excellent rate capability at 470 mA h g −1 at the current density of 3C. 
    more » « less
  3. Abstract

    A stable lean‐electrolyte operating lithium–sulfur (Li–S) battery based on a cathode of Li2S in situ electrocatalytically deposited from L2S8catholyte onto a support of metallic molybdenum disulfide (1T‐MoS2) on carbon cloth (CC) is created. The 1T‐MoS2significantly accelerates the conversion Li2S8catholyte to Li2S, chemically adsorbs lithium polysulfide (LiPSs) from solution, and suppresses crossover of the LiPSs to the anode. These experimental findings are explained by density functional theory calculations that show that 1T‐MoS2gives rise to strong adsorption of polysulfides on its surface and is electrocatalytic for the targeted reversible Li–S conversion reactions. The CC/1T‐MoS2electrode in a Li–S battery delivers an initial capacity of 1238 mAh g−1, with a low capacity fade of only 0.051% per cycle over 500 cycles at 0.5C. Even at a high sulfur loading (4.4 mg cm−2) and low electrolyte/S (E/S) ratio of 3.7 µL mg−1, the battery achieves an initial reversible capacity of 1176 mA h g−1at 0.5C, with 87% capacity retention after 160 cycles. The post 500 cycles Li metal opposing 1T‐MoS2is substantially smoother than the Li opposing CC, with XPS supporting the role of 1T‐MoS2in inhibiting LiPSs crossover.

     
    more » « less
  4. Li2S is one of the most promising cathode materials for Li‐ion batteries because of its high theoretical capacity and compatibility with Li‐metal‐free anode materials. However, the poor conductivity and electrochemical reactivity lead to low initial capacity and severe capacity decay. In this communication, a nitrogen and phosphorus codoped carbon (N,P–C) framework derived from phytic acid doped polyaniline hydrogel is designed to support Li2S nanoparticles as a binder‐free cathode for Li–S battery. The porous 3D architecture of N and P codoped carbon provides continuous electron pathways and hierarchically porous channels for Li ion transport. Phosphorus doping can also suppress the shuttle effect through strong interaction between sulfur and the carbon framework, resulting in high Coulombic efficiency. Meanwhile, P doping in the carbon framework plays an important role in improving the reaction kinetics, as it may help catalyze the redox reactions of sulfur species to reduce electrochemical polarization, and enhance the ionic conductivity of Li2S. As a result, the Li2S/N,P–C composite electrode delivers a stable capacity of 700 mA h g−1with average Coulombic efficiency of 99.4% over 100 cycles at 0.1C and an areal capacity as high as 2 mA h cm−2at 0.5C.

     
    more » « less
  5. Molybdenum disulfide (MoS 2 ) may be a promising alternative for lithium ion batteries (LIBs) because it offers a unique layered crystal structure with a large and tunable distance between layers. This enables the anticipated excellent rate and cycling stability because they can promote the reversible lithium ion intercalation and de-intercalation without huge volume change which consequently prevents the pulverization of active materials during repeated charge and discharge processes. Herein, we prepared hierarchical MoS 2 –carbon (MoS 2 –C) microspheres via a continuous and scalable ultrasonic nebulization assisted route. The structure, composition, and electrochemical properties are investigated in detail. The MoS 2 –C microspheres consist of few-layer MoS 2 nanosheets bridged by carbon, which separates the exfoliated MoS 2 layers and prevents their aggregation and restacking, thus leading to improved kinetic, enhanced conductivity and structural integrity. The novel architecture offers additional merits such as overall large size and high packing density, which promotes their practical applications. The MoS 2 –C microspheres have been demonstrated with excellent electrochemical performances in terms of low resistance, high capacity even at large current density, stable cycling performance, etc. The electrodes exhibited 800 mA h g −1 at 1000 mA g −1 over 170 cycles. At a higher current density of 3200 mA g −1 , a capacity of 730 mA h g −1 can be also maintained. The MoS 2 –C microspheres are practically applicable not only because of the continuous and large scale synthesis via the current strategy, but also the possess a robust and integrated architecture which ensures the excellent electrochemical properties. 
    more » « less