ABSTRACT GW170817/GRB170817A has offered unprecedented insight into binary neutron star post-merger systems. Its Prompt and afterglow emission imply the presence of a tightly collimated relativistic jet with a smooth transverse structure. However, it remains unclear whether and how the central engine can produce such structured jets. Here, we utilize 3D general relativistic magnetohydrodynamic simulations starting with a black hole surrounded by a magnetized torus with properties typically expected of a post-merger system. We follow the jet, as it is self-consistently launched, from the scale of the compact object out to more than three orders of magnitude in distance. We find that this naturally results in a structured jet, which is collimated by the disc wind into a half-opening angle of roughly 10°; its emission can explain features of both the prompt and afterglow emission of GRB170817A for a 30° observing angle. Our work is the first to compute the afterglow, in the context of a binary merger, from a relativistic magnetized jet self-consistently generated by an accreting black hole, with the jet’s transverse structure determined by the accretion physics and not prescribed at any point.
more »
« less
Accelerating AGN jets to parsec scales using general relativistic MHD simulations
ABSTRACT Accreting black holes produce collimated outflows, or jets, that traverse many orders of magnitude in distance, accelerate to relativistic velocities, and collimate into tight opening angles. Of these, perhaps the least understood is jet collimation due to the interaction with the ambient medium. In order to investigate this interaction, we carried out axisymmetric general relativistic magnetohydrodynamic simulations of jets produced by a large accretion disc, spanning over 5 orders of magnitude in time and distance, at an unprecedented resolution. Supported by such a disc, the jet attains a parabolic shape, similar to the M87 galaxy jet, and the product of the Lorentz factor and the jet half-opening angle, γθ ≪ 1, similar to values found from very long baseline interferometry (VLBI) observations of active galactic nuclei (AGNs) jets; this suggests extended discs in AGNs. We find that the interaction between the jet and the ambient medium leads to the development of pinch instabilities, which produce significant radial and lateral variability across the jet by converting magnetic and kinetic energy into heat. Thus pinched regions in the jet can be detectable as radiating hotspots and may provide an ideal site for particle acceleration. Pinching also causes gas from the ambient medium to become squeezed between magnetic field lines in the jet, leading to enhanced mass loading and deceleration of the jet to non-relativistic speeds, potentially contributing to the spine-sheath structure observed in AGN outflows.
more »
« less
- Award ID(s):
- 1911080
- PAR ID:
- 10121813
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 490
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 2200-2218
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Accreting black holes (BHs) launch relativistic collimated jets, across many decades in luminosity and mass, suggesting the jet launching mechanism is universal, robust, and scale-free. Theoretical models and general relativistic magnetohydrodynamic (GRMHD) simulations indicate that the key jet-making ingredient is large-scale poloidal magnetic flux. However, its origin is uncertain, and it is unknown if it can be generated in situ or dragged inward from the ambient medium. Here, we use the GPU-accelerated GRMHD code h-amr to study global 3D BH accretion at unusually high resolutions more typical of local shearing box simulations. We demonstrate that turbulence in a radially extended accretion disc can generate large-scale poloidal magnetic flux in situ, even when starting from a purely toroidal magnetic field. The flux accumulates around the BH till it becomes dynamically important, leads to a magnetically arrested disc (MAD), and launches relativistic jets that are more powerful than the accretion flow. The jet power exceeds that of previous GRMHD toroidal field simulations by a factor of 10 000. The jets do not show significant kink or pinch instabilities, accelerate to γ ∼ 10 over three decades in distance, and follow a collimation profile similar to the observed M87 jet.more » « less
-
Abstract Active galactic nuclei (AGN) show a range of morphologies and dynamical properties, which are determined not only by parameters intrinsic to the central engine but also their interaction with the surrounding environment. We investigate the connection of kiloparsec scale AGN jet properties to their intrinsic parameters and surroundings. This is done using a suite of 40 relativistic hydrodynamic simulations spanning a wide range of engine luminosities and opening angles. We explore AGN jet propagation with different ambient density profiles, including r −2 (self-similar solution) and r −1 , which is more relevant for AGN host environments. While confirmation awaits future 3D studies, the Fanaroff–Riley (FR) morphological dichotomy arises naturally in our 2D models. Jets with low energy density compared to the ambient medium produce a center-brightened emissivity distribution, while emissivity from relatively higher energy density jets is dominated by the jet head. We observe recollimation shocks in our simulations that can generate bright spots along the spine of the jet, providing a possible explanation for “knots” observed in AGN jets. We additionally find a scaling relation between the number of knots and the jet-head-to-surroundings energy density ratio. This scaling relation is generally consistent with the observations of the jets in M87 and Cygnus A. Our model also correctly predicts M87 as FRI and Cygnus A as FRII. Our model can be used to relate jet dynamical parameters such as jet head velocity, jet opening angle, and external pressure to jet power, and ambient density estimates.more » « less
-
ABSTRACT Relativistic jets, or highly collimated and fast-moving outflows, are endemic to many astrophysical phenomena. The jets produced by gamma-ray bursts (GRBs) and tidal disruption events (TDEs) are accompanied by the accretion of material on to a black hole or neutron star, with the accretion rate exceeding the Eddington limit of the compact object by orders of magnitude. In such systems, radiation dominates the energy–momentum budget of the outflow, and the dynamical evolution of the jet is governed by the equations of radiation hydrodynamics. Here, we show that there are analytical solutions to the equations of radiation hydrodynamics in the viscous (i.e. diffusive) regime that describe structured, relativistic jets, which consist of a fast-moving, highly relativistic core surrounded by a slower moving, less relativistic sheath. In these solutions, the slower moving, outer sheath contains most of the mass, and the jet structure is mediated by local anisotropies in the radiation field. We show that, depending on the pressure and density profile of the ambient medium, the angular profile of the jet Lorentz factor is Gaussian or falls off even more steeply with angle. These solutions have implications for the nature of jet production and evolution in hyperaccreting systems, and demonstrate that such jets – and the corresponding jet structure – can be sustained entirely by radiative processes. We discuss the implications of these findings in the context of jetted TDEs and short and long GRBs.more » « less
-
Abstract The origin of short gamma-ray bursts is associated with outflows powered by the remnant of a binary neutron star merger. This remnant can be either a black hole or a highly magnetized, fast-spinning neutron star, also known as a magnetar. Here we present the results of two relativistic magnetohydrodynamical simulations aimed at investigating the large-scale dynamics and propagation of magnetar collimated outflows through the medium surrounding the remnant. The first simulation evolves a realistic jet by injecting external simulation data, while the second evolves an analytical model jet with similar properties for comparison. We find that both outflows remain collimated and successfully emerge through the static medium surrounding the remnant. However, they fail to attain relativistic velocities and only reach a mean maximum speed of ∼0.7cfor the realistic jet and ∼0.6cfor the analytical jet. We also find that the realistic jet has a much more complex structure. The lack of highly relativistic speeds, which makes these jets unsuitable as short gamma-ray burst sources, is due to numerical limitations and is not general to all possible magnetar outflows. A jet like the one we study, however, could give rise to or augment a blue kilonova component. In addition, it would make the propagation of a relativistic jet easier, should one be launched after the neutron star collapses into a black hole.more » « less