skip to main content


Title: Propagation of a Realistic Magnetar Jet through a Binary Neutron Star Merger Medium and Implications for Short Gamma-Ray Bursts
Abstract

The origin of short gamma-ray bursts is associated with outflows powered by the remnant of a binary neutron star merger. This remnant can be either a black hole or a highly magnetized, fast-spinning neutron star, also known as a magnetar. Here we present the results of two relativistic magnetohydrodynamical simulations aimed at investigating the large-scale dynamics and propagation of magnetar collimated outflows through the medium surrounding the remnant. The first simulation evolves a realistic jet by injecting external simulation data, while the second evolves an analytical model jet with similar properties for comparison. We find that both outflows remain collimated and successfully emerge through the static medium surrounding the remnant. However, they fail to attain relativistic velocities and only reach a mean maximum speed of ∼0.7cfor the realistic jet and ∼0.6cfor the analytical jet. We also find that the realistic jet has a much more complex structure. The lack of highly relativistic speeds, which makes these jets unsuitable as short gamma-ray burst sources, is due to numerical limitations and is not general to all possible magnetar outflows. A jet like the one we study, however, could give rise to or augment a blue kilonova component. In addition, it would make the propagation of a relativistic jet easier, should one be launched after the neutron star collapses into a black hole.

 
more » « less
Award ID(s):
1907955
NSF-PAR ID:
10438389
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
953
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 73
Size(s):
["Article No. 73"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Relativistic jets, or highly collimated and fast-moving outflows, are endemic to many astrophysical phenomena. The jets produced by gamma-ray bursts (GRBs) and tidal disruption events (TDEs) are accompanied by the accretion of material on to a black hole or neutron star, with the accretion rate exceeding the Eddington limit of the compact object by orders of magnitude. In such systems, radiation dominates the energy–momentum budget of the outflow, and the dynamical evolution of the jet is governed by the equations of radiation hydrodynamics. Here, we show that there are analytical solutions to the equations of radiation hydrodynamics in the viscous (i.e. diffusive) regime that describe structured, relativistic jets, which consist of a fast-moving, highly relativistic core surrounded by a slower moving, less relativistic sheath. In these solutions, the slower moving, outer sheath contains most of the mass, and the jet structure is mediated by local anisotropies in the radiation field. We show that, depending on the pressure and density profile of the ambient medium, the angular profile of the jet Lorentz factor is Gaussian or falls off even more steeply with angle. These solutions have implications for the nature of jet production and evolution in hyperaccreting systems, and demonstrate that such jets – and the corresponding jet structure – can be sustained entirely by radiative processes. We discuss the implications of these findings in the context of jetted TDEs and short and long GRBs. 
    more » « less
  2. Abstract Many short gamma-ray bursts (GRBs) originate from binary neutron star mergers, and there are several theories that predict the production of coherent, prompt radio signals either prior, during, or shortly following the merger, as well as persistent pulsar-like emission from the spin-down of a magnetar remnant. Here we present a low frequency (170–200 MHz) search for coherent radio emission associated with nine short GRBs detected by the Swift and/or Fermi satellites using the Murchison Widefield Array (MWA) rapid-response observing mode. The MWA began observing these events within 30–60 s of their high-energy detection, enabling us to capture any dispersion delayed signals emitted by short GRBs for a typical range of redshifts. We conducted transient searches at the GRB positions on timescales of 5 s, 30 s, and 2 min, resulting in the most constraining flux density limits on any associated transient of 0.42, 0.29, and 0.084 Jy, respectively. We also searched for dispersed signals at a temporal and spectral resolution of 0.5 s and 1.28 MHz, but none were detected. However, the fluence limit of 80–100 Jy ms derived for GRB 190627A is the most stringent to date for a short GRB. Assuming the formation of a stable magnetar for this GRB, we compared the fluence and persistent emission limits to short GRB coherent emission models, placing constraints on key parameters including the radio emission efficiency of the nearly merged neutron stars ( $\epsilon_r\lesssim10^{-4}$ ), the fraction of magnetic energy in the GRB jet ( $\epsilon_B\lesssim2\times10^{-4}$ ), and the radio emission efficiency of the magnetar remnant ( $\epsilon_r\lesssim10^{-3}$ ). Comparing the limits derived for our full GRB sample (along with those in the literature) to the same emission models, we demonstrate that our fluence limits only place weak constraints on the prompt emission predicted from the interaction between the relativistic GRB jet and the interstellar medium for a subset of magnetar parameters. However, the 30-min flux density limits were sensitive enough to theoretically detect the persistent radio emission from magnetar remnants up to a redshift of $z\sim0.6$ . Our non-detection of this emission could imply that some GRBs in the sample were not genuinely short or did not result from a binary neutron star merger, the GRBs were at high redshifts, these mergers formed atypical magnetars, the radiation beams of the magnetar remnants were pointing away from Earth, or the majority did not form magnetars but rather collapse directly into black holes. 
    more » « less
  3. null (Ed.)
    ABSTRACT Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively nearby events. We use late-time radio observations of short duration gamma-ray bursts (sGRBs) to constrain this model. Two samples of events were studied: four sGRBs that are possibly in the local (<200 Mpc) Universe were selected to constrain the remnant non-thermal emission from the sub-relativistic ejecta, whereas 17 sGRBs at cosmological distances were used to constrain the presence of a proto-magnetar central engine, possibly re-energizing the merger ejecta. We consider the case of GRB 170817A/GW170817 and find that in this case the early radio emission may be quenched by the jet blast-wave. In all cases, for ejecta mass range of ${M}_{\rm {ej}}\lesssim 10^{-2}\, (5\times 10^{-2})\, \mathrm{M}_\odot$, we can rule out very energetic merger ejecta ${E}_{\rm {ej}}\gtrsim 5\times 10^{52}\, (10^{53})\, \rm erg$, thus excluding the presence of a powerful magnetar as a merger remnant. 
    more » « less
  4. Abstract The contemporaneous detection of gravitational waves and gamma rays from GW170817/GRB 170817A, followed by kilonova emission a day after, confirmed compact binary neutron star mergers as progenitors of short-duration gamma-ray bursts (GRBs) and cosmic sources of heavy r -process nuclei. However, the nature (and life span) of the merger remnant and the energy reservoir powering these bright gamma-ray flashes remains debated, while the first minutes after the merger are unexplored at optical wavelengths. Here, we report the earliest discovery of bright thermal optical emission associated with short GRB 180618A with extended gamma-ray emission—with ultraviolet and optical multicolor observations starting as soon as 1.4 minutes post-burst. The spectrum is consistent with a fast-fading afterglow and emerging thermal optical emission 15 minutes post-burst, which fades abruptly and chromatically (flux density F ν ∝ t − α , α = 4.6 ± 0.3) just 35 minutes after the GRB. Our observations from gamma rays to optical wavelengths are consistent with a hot nebula expanding at relativistic speeds, powered by the plasma winds from a newborn, rapidly spinning and highly magnetized neutron star (i.e., a millisecond magnetar), whose rotational energy is released at a rate L th ∝ t −(2.22±0.14) to reheat the unbound merger-remnant material. These results suggest that such neutron stars can survive the collapse to a black hole on timescales much larger than a few hundred milliseconds after the merger and power the GRB itself through accretion. Bright thermal optical counterparts to binary merger gravitational wave sources may be common in future wide-field fast-cadence sky surveys. 
    more » « less
  5. Abstract

    For the first ∼3 yrs after the binary neutron star merger event GW 170817, the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium withn< 0.01 cm−3. We report on observational evidence for an excess of X-ray emission atδt> 900 days after the merger. WithLx≈ 5 × 1038erg s−1at 1234 days, the recently detected X-ray emission represents a ≥3.2σ(Gaussian equivalent) deviation from the universal post-jet-break model that best fits the multiwavelength afterglow at earlier times. In the context ofJetFitafterglow models, current data represent a departure with statistical significance ≥3.1σ, depending on the fireball collimation, with the most realistic models showing excesses at the level of ≥3.7σ. A lack of detectable 3 GHz radio emission suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e., a kilonova afterglow. In this context, we present a set of ab initio numerical relativity binary neutron star (BNS) merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented.

     
    more » « less