skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire
Abstract Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire‐driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2lost in Amazon understory fires between 2001 and 2010. Trait‐enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests.  more » « less
Award ID(s):
2001184 1802453
PAR ID:
10121891
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
23
Issue:
1
ISSN:
1461-023X
Page Range / eLocation ID:
p. 99-106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Forest disturbances associated with edge effects, wildfires, and windthrow events have impacted large swaths of the tropics. Defining the levels of forest disturbance that cause ecologically relevant reductions in fruit and seed (FS) production is key to understanding forest resilience to current and future global changes. Here, we tested the hypotheses that: (1) low‐intensity experimental fires alone would cause minor changes in FS production and diversity in a tropical forest, whereas synergistic disturbance effects resulting from edge effects, wildfires, droughts, and blowdowns would drive long‐term reductions in FS diversity and production; and (2) the functional composition of FS in disturbed forests would shift toward tree species with acquisitive strategies. To test these hypotheses, we quantified FS production between 2005 and 2018 in a large‐scale fire experiment in southeast Amazonia. The experimental treatments consisted of three 50‐ha plots: a Control plot, a plot burned annually (B1yr) and a plot burned every three years (B3yr) between 2004 and 2010. These plots were impacted by edge effects, two droughts (2007 and 2010), and a blowdown event in 2012. Our results show that FS production remained relatively high following low‐intensity fires, but declined where fires were most severe (i.e., forest edge of B3yr). The number of species‐producing FS declined sharply when fires co‐occurred with droughts and a windthrow event, and species composition shifted throughout the experiment. Along the edge of both burned plots, the forest community became dominated by species with faster relative growth, thinner leaves, thinner bark, and lower height. We conclude that compounding disturbances changed FS patterns, with a strong effect on species composition and potentially large effects on the next generation of trees. This is largely due to reductions in the diversity of species‐producing FS where fires are severe, causing a shift toward functional traits typically associated with pioneer and generalist species. 
    more » « less
  2. While the climate and human-induced forest degradation is increasing in the Amazon, fire impacts on forest dynamics remain understudied in the wetter regions of the basin, which are susceptible to large wildfires only during extreme droughts. To address this gap, we installed burned and unburned plots immediately after a wildfire in the northern Purus-Madeira (Central Amazon) during the 2015 El-Niño. We measured all individuals with diameter of 10 cm or more at breast height and conducted recensuses to track the demographic drivers of biomass change over 3 years. We also assessed how stem-level growth and mortality were influenced by fire intensity (proxied by char height) and tree morphological traits (size and wood density). Overall, the burned forest lost 27.3% of stem density and 12.8% of biomass, concentrated in small and medium trees. Mortality drove these losses in the first 2 years and recruitment decreased in the third year. The fire increased growth in lower wood density and larger sized trees, while char height had transitory strong effects increasing tree mortality. Our findings suggest that fire impacts are weaker in the wetter Amazon. Here, trees of greater sizes and higher wood densities may confer a margin of fire resistance; however, this may not extend to higher intensity fires arising from climate change. 
    more » « less
  3. Abstract Wildfire is an essential earth‐system process, impacting ecosystem processes and the carbon cycle. Forest fires are becoming more frequent and severe, yet gaps exist in the modeling of fire on vegetation and carbon dynamics. Strategies for reducing carbon dioxide (CO2) emissions from wildfires include increasing tree harvest, largely based on the public assumption that fires burn live forests to the ground, despite observations indicating that less than 5% of mature tree biomass is actually consumed. This misconception is also reflected though excessive combustion of live trees in models. Here, we show that regional emissions estimates using widely implemented combustion coefficients are 59%–83% higher than emissions based on field observations. Using unique field datasets from before and after wildfires and an improved ecosystem model, we provide strong evidence that these large overestimates can be reduced by using realistic biomass combustion factors and by accurately quantifying biomass in standing dead trees that decompose over decades to centuries after fire (“snags”). Most model development focuses on area burned; our results reveal that accurately representing combustion is also essential for quantifying fire impacts on ecosystems. Using our improvements, we find that western US forest fires have emitted 851 ± 228 Tg CO2(~half of alternative estimates) over the last 17 years, which is minor compared to 16,200 Tg CO2from fossil fuels across the region. 
    more » « less
  4. Abstract Understanding the resilience of tropical forests to fire is essential for evaluating their dynamics under climate change and increasing land-use pressures. Here, we assess how different fire frequencies and intensities influence tree mortality and carbon dynamics in southeastern Amazonia. Using a replicated randomized block design with 24 plots (40 × 40 m), we applied four treatments: unburned control, one burn in 2016 (B1), two burns in 2013 and 2016 (B2), and two burns with added fuel (B2+) to increase fire intensity. Forest inventories conducted from 2012 to 2024 measured tree mortality, diversity, composition, and aboveground biomass. Fire frequency and intensity significantly increased mortality, particularly among small trees, but impacts on forest structure and productivity were more nuanced. Aboveground biomass declined modestly in burned plots, with the greatest loss in B2+ (13%). Aboveground net primary productivity (ANPP) dropped immediately post-burn, especially in B2 and B2+, and partially recovered by 2022–2024. In contrast, leaf area index (LAI) and litterfall rebounded within a couple of years, suggesting a degree of structural and functional resilience. Species richness and composition remained relatively stable in the years following the first experimental fires, but gradually declined and shifted in B2 and B2+ plots beginning in 2014. These results indicate that the experimental forests’ resilience to low-intensity and infrequent fires can prevent widespread forest collapse, but repeated and intensified burns likely undermine long-term resilience by altering forest structure, composition, and carbon dynamics. With the southeastern Amazon forests projected to burn more often in the coming decades, our results highlight both the vulnerability and recovery potential of these ecosystems. Maintaining ecological integrity and minimizing additional disturbances that influence fuel availability will be critical for sustaining forest functions under future fire regimes. 
    more » « less
  5. Abstract Wildfires in humid tropical forests have become more common in recent years, increasing the rates of tree mortality in forests that have not co-evolved with fire. Estimating carbon emissions from these wildfires is complex. Current approaches rely on estimates of committed emissions based on static emission factors through time and space, yet these emissions cannot be assigned to specific years, and thus are not comparable with other temporally-explicit emission sources. Moreover, committed emissions are gross estimates, whereas the long-term consequences of wildfires require an understanding of net emissions that accounts for post-fire uptake of CO 2 . Here, using a 30 year wildfire chronosequence from across the Brazilian Amazon, we calculate net CO 2 emissions from Amazon wildfires by developing statistical models comparing post-fire changes in stem mortality, necromass decomposition and vegetation growth with unburned forest plots sampled at the same time. Over the 30 yr time period, gross emissions from combustion during the fire and subsequent tree mortality and decomposition were equivalent to 126.1 Mg CO 2 ha −1 of which 73% (92.4 Mg CO 2 ha −1 ) resulted from mortality and decomposition. These emissions were only partially offset by forest growth, with an estimated CO 2 uptake of 45.0 Mg ha −1 over the same time period. Our analysis allowed us to assign emissions and growth across years, revealing that net annual emissions peak 4 yr after forest fires. At present, Brazil’s National Determined Contribution (NDC) for emissions fails to consider forest fires as a significant source, even though these are likely to make a substantial and long-term impact on the net carbon balance of Amazonia. Considering long-term post-fire necromass decomposition and vegetation regrowth is crucial for improving global carbon budget estimates and national greenhouse gases (GHG) inventories for tropical forest countries. 
    more » « less