skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2001184

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire‐driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2lost in Amazon understory fires between 2001 and 2010. Trait‐enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests. 
    more » « less
  2. NA (Ed.)
    Amazon forests are undergoing rapid transformations driven by deforestation, climate change, fire, and other anthropogenic pressures, leading to the hypothesis that they may be nearing a catastrophic tipping point—beyond which ecosystems could shift to a permanently altered state. This review revisits the concept of an Amazon tipping point and assesses the risk of forest collapse from an ecological perspective. We synthesize evidence showing that environmental stressors can drive critical ecosystem transitions, either gradually through incremental loss of resilience or abruptly via synergistic feedbacks. The interplay between climate and land-use change amplifies risks to biodiversity, ecosystem services, and livelihoods. Yet, there is limited evidence for a single, system-wide tipping point. Instead, the Amazon's resilience—although not unlimited—offers meaningful pathways for recovery. The most immediate and effective strategies to support this resilience include slowing forest loss, mitigating climate change, reducing fire activity, curbing defaunation, and restoring degraded ecosystems. Without decisive action to address direct threats, the Amazon system may be pushed beyond safe ecological-climatological operating limits—even in the absence of sharply defined thresholds—due to the scale and persistence of anthropogenic pressures. Preserving the Amazon's ecological integrity and its vital role in regulating the global climate requires urgent, sustained conservation efforts in collaboration with local and Indigenous communities. 
    more » « less
    Free, publicly-accessible full text available October 6, 2026
  3. Wildfires, exacerbated by extreme weather events and land use, threaten to change the Amazon from a net carbon sink to a net carbon source. Here, we develop and apply a coupled ecosystem-fire model to quantify how greenhouse gas–driven drying and warming would affect wildfires and associated CO 2 emissions in the southern Brazilian Amazon. Regional climate projections suggest that Amazon fire regimes will intensify under both low- and high-emission scenarios. Our results indicate that projected climatic changes will double the area burned by wildfires, affecting up to 16% of the region’s forests by 2050. Although these fires could emit as much as 17.0 Pg of CO 2 equivalent to the atmosphere, avoiding new deforestation could cut total net fire emissions in half and help prevent fires from escaping into protected areas and indigenous lands. Aggressive efforts to eliminate ignition sources and suppress wildfires will be critical to conserve southern Amazon forests. 
    more » « less