skip to main content


Title: An Investigation Into the Challenges of Using Metal Additive Manufacturing for the Production of Patient-Specific Aneurysm Clips
Cerebral aneurysm clips are biomedical implants applied by neurosurgeons to re-approximate arterial vessel walls and prevent catastrophic aneurysmal hemorrhages in patients. Current methods of aneurysm clip production are labor intensive and time-consuming, leading to high costs per implant and limited variability in clip morphology. Metal additive manufacturing is investigated as an alternative to traditional manufacturing methods that may enable production of patient-specific aneurysm clips to account for variations in individual vascular anatomy and possibly reduce surgical complication risks. Relevant challenges to metal additive manufacturing are investigated for biomedical implants, including material choice, design limitations, postprocessing, printed material properties, and combined production methods. Initial experiments with additive manufacturing of 316 L stainless steel aneurysm clips are carried out on a selective laser melting (SLM) system. The dimensions of the printed clips were found to be within 0.5% of the dimensions of the designed clips. Hardness and density of the printed clips (213 ± 7 HV1 and 7.9 g/cc, respectively) were very close to reported values for 316 L stainless steel, as expected. No ferrite and minimal porosity is observed in a cross section of a printed clip, with some anisotropy in the grain orientation. A clamping force of approximately 1 N is measured with a clip separation of 1.5 mm. Metal additive manufacturing shows promise for use in the creation of custom aneurysm clips, but some of the challenges discussed will need to be addressed before clinical use is possible.  more » « less
Award ID(s):
1728933
NSF-PAR ID:
10121924
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Medical Devices
Volume:
13
Issue:
3
ISSN:
1932-6181
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability of Additive Manufacturing (AM) processes to ensure delivery of high quality metal-based components is somewhat limited by insufficient inspection capabilities. The inspection of AM parts presents particular challenges due to the design flexibility that the fabrication method affords. The nondestructive evaluation (NDE) methods employed need to be selected based on the material properties, type of possible defects, and geometry of the parts. Electromagnetic method, in particular Eddy Current (EC), is proposed for the inspections. This evaluation of EC inspection considers surface and near-surface defects in a stainless steel (SS) 17 4 PH additively manufactured sample and a SS 17 4 PH annealed plates manufactured traditionally (reference sample). The surfaces of the samples were polished using 1 micron polishing Alumina grit to achieve a mirror like surface finish. 1.02 mm (0.04”), 0.508 mm (0.02”) and 0.203 mm (0.008”) deep Electronic Discharge Machining (EDM) notches were created on the polished surface of the samples. Lift off and defect responses for both additive and reference samples were obtained using a VMEC-1 commercial instrument and a 500 kHz absolute probe. The inspection results as well as conductivity assessments for the AM sample in terms of the impedance plane signature were compared to response of similar features in the reference sample. Direct measurement of electromagnetic properties of the AM samples is required for precise inspection of the parts. Results show that quantitative comparison of the AM and traditional materials help for the development of EC technology for inspection of additively manufactured metal parts. 
    more » « less
  2. Stochastic mesoscale inhomogeneity of material properties and material symmetries are investigated in a 3D-printed material. The analysis involves a spatially-dependent characterization of the microstructure in 316 L stainless steel, obtained through electron backscatter diffraction imaging. These data are subsequently fed into a Voigt–Reuss–Hill homogenization approxima- tion to produce maps of elasticity tensor coefficients along the path of experimental probing. Information-theoretic stochastic models corresponding to this stiffness random field are then introduced. The case of orthotropic fields is first defined as a high-fidelity model, the realizations of which are consistent with the elasticity maps. To investigate the role of material symmetries, an isotropic approximation is next introduced through ad-hoc projections (using various metrics). Both stochastic representations are identified using the dataset. In particular, the correlation length along the characterization path is identified using a maximum likelihood estimator. Uncertainty propagation is finally performed on a complex geometry, using a Monte Carlo analysis. It is shown that mechanical predictions in the linear elastic regime are mostly sensitive to material symmetry but weakly depend on the spatial correlation length in the considered propagation scenario. 
    more » « less
  3. This study investigates the application of electroless nickel deposition on additively manufactured stainless steel samples. Current additive manufacturing (AM) technologies produce metal components with a rough surface. Rough surfaces generally exhibit fatigue characteristics, increasing the probability of initiating a crack or fracture to the printed part. For this reason, the direct use of as-produced parts in a finished product cannot be actualized, which presents a challenge. Post-processing of the AM parts is therefore required to smoothen the surface. This study analyzes chempolish (CP) and electropolish (EP) surface finishing techniques for post-processing AM stainless steel components CP has a great advantage in creating uniform, smooth surfaces regardless of size or part geometry EP creates an extremely smooth surface, which reduces the surface roughness to the sub-micrometer level.

    In this study, we also investigate nickel deposition on EP, CP, and as-built AM components using electroless nickel solutions. Electroless nickel plating is a method of alloy treatment designed to increase manufactured component’s hardness and surface resistance to the unrelenting environment. The electroless nickel plating process is more straightforward than its counterpart electroplating. We use low-phosphorus (2–5% P), medium-phosphorus (6–9% P), and high-phosphorus (10–13% P). These Ni deposition experiments were optimized using the L9 Taguchi design of experiments (TDOE), which compromises the prosperous content in the solution, surface finish, plane of the geometry, and bath temperature. The pre- and post-processed surface of the AM parts was characterized by KEYENCE Digital MicroscopeVHX-7000 and Phenom XL Desktop SEM. The experimental results show that electroless nickel deposition produces uniform Ni coating on the additively manufactured components up to 20 μm per hour. Mechanical properties of as-built and Ni coated AM samples were analyzed by applying a standard 10 N scratch test. Nickel coated AM samples were up to two times scratch resistant compared to the as-built samples. This study suggests electroless nickel plating is a robust viable option for surface hardening and finishing AM components for various applications and operating conditions. 

    more » « less
  4. null (Ed.)
    INTRODUCTION: Orthopedic implants are important therapeutic devices for the management of a wide range of orthopedic conditions. However, bacterial infections of orthopedic implants remain a major problem, and not an uncommon one, leading to an increased rate of osteomyelitis, sepsis, implant failure and dysfunction, etc. Treating these infections is more challenging as the causative organism protects itself by the production of a biofilm over the implant’s surface (1). Infections start by the adhesion and colonization of pathogenic bacteria such as Staphylococcus aureus (SA), Staphylococcus epidermidis (SE), Escherichia coli (E. coli), Methicillin-Resistant Staphylococcus aureus (MRSA), and Multi-Drug Resistant Escherichia coli (MDR E. coli) on the implant’s surfaces. Specifically, Staphylococcus comprises up to two-thirds of all pathogens involved in orthopedic implant infections (2). However, bacterial surface adhesion is a complex process influenced by several factors such as chemical composition, hydrophobicity, magnetization, surface charge, and surface roughness of the implant (3). Considering the intimate association between bacteria and the implant surface, we measured the effect of stainless-steel surface properties on bacterial surface attachment and subsequent formation of biofilms controlling above mentioned factors. METHODS: The prominent bacteria responsible for orthopedic implant infections (SA, SE, E. coli, MRSA, and MDR E. coli) were used in this study. We were able to control the grain size of medical grade 304 and 316L stainless steel without altering their chemical composition (grain size range= 20μm-200nm) (4). Grain size control affected the nano-topography of the material surfaces which was measured by an Atomic Force Microscope (AFM). Grain sizes, such as 0.2, 0.5, 1, 2, 3, 9, and 10 μm, were used both polished and non-polished. All the stainless-steel samples were cleaned by treating with acetone and ethanol under sonication. Triplicates of all polished and non-polished samples with different grain sizes were subjected to magnetization of DM, 0.1T, 0.5T, and 1T, before seeding them with the bacteria. Controls were used in the form of untreated samples. Bacterial were grown in Tryptic Soy Broth (TSB). An actively growing bacterial suspension was seeded onto the stainless-steel discs into 24-well micro-titer plates and kept for incubation. After 24 hours of incubation, the stainless-steel discs were washed with Phosphate Buffer Saline (PBS) to remove the plankton bacteria and allow the sessile bacteria in the biofilm to remain. The degree of development of the bacterial biofilms on the stainless-steel discs were measured using spectrophotometric analysis. For this, the bacterial biofilm was removed from the stainless steel by sonication. The formation of biofilms was also determined by performing a biofilm staining method using Safranin. RESULTS SECTION: AFM results revealed a slight decrease in roughness by decreasing the grain size of the material. Moreover, the samples were segregated into two categories of polished and non-polished samples, in which polishing decreased roughness significantly. After careful analysis we found out that polished surfaces showed a higher degree for biofilm formation in comparison to the non-polished ones. We also observed that bacteria showed a higher rate for biofilm formation for the demagnetized samples, whereas 0.5T magnetization showed the least amount of biofilm formation. After 0.5T, there was no significant change in the rate of biofilm formation on the stainless-steel samples. Altogether, stainless steel samples containing 0.5 μm and less grainsize, and magnetized with 0.5 tesla and stronger magnets demonstrated the least degree of biofilm formation. DISCUSSION: In summary, the results demonstrate that controlling the grain size of medical grade stainless steel can control and mitigate bacterial responses on, and thus possibly infections of, orthopedic implants or other implantable devices. The research was funded by Komatsuseiki Kosakusho Co., Ltd (KSJ: Japan) SIGNIFICANCE/CLINICAL RELEVANCE: Orthopedic implants that more than 70% of them are made of metals (i.e., stainless steel, titanium, and cobalt-chromium alloys) are failing through loosening and breakage due to their limited mechanical properties. On the other hand, the risk of infection for these implants and its financial burden on our society is undeniable. We have seen that our uniformly nanograined stainless steel shows improved mechanical properties (i.e., higher stiffness, hardness, fatigue) as compared to conventional stainless steel along with the reduction of biofilm formation on its surface. These promising results made us to peruse the development of nanograined titanium and cobalt-chromium alloys for resolving the complications of orthopedic implants. 
    more » « less
  5. This study investigates the disparate impact of internal pores on the fracture behavior of two metal alloys fabricated via laser powder bed fusion (L-PBF) additive manufacturing (AM)—316L stainless steel and Ti-6Al-4V. Data from mechanical tests over a range of stress states for dense samples and those with intentionally introduced penny-shaped pores of various diameters were used to contrast the combined impact of pore size and stress state on the fracture behavior of these two materials. The fracture data were used to calibrate and compare multiple fracture models (Mohr-Coulomb, Hosford-Coulomb, and maximum stress criteria), with results compared in equivalent stress (versus stress triaxiality and Lode angle) space, as well as in their conversions to equivalent strain space. For L-PBF 316L, the strain-based fracture models captured the stress state dependent failure behavior up to the largest pore size studied (2400 µm diameter, 16% cross-sectional area of gauge region), while for L-PBF Ti-6Al-4V, the stress-based fracture models better captured the change in failure behavior with pore size up to the largest pore size studied. This difference can be attributed to the relatively high ductility of 316L stainless steel, for which all samples underwent significant plastic deformation prior to failure, contrasted with the relatively low ductility of Ti-6Al-4V, for which, with increasing pore size, the displacement to failure was dominated by elastic deformation. 
    more » « less