skip to main content


Title: The Fe 2 (NO) 2 Diamond Core: A Unique Structural Motif In Non‐Heme Iron–NO Chemistry
Abstract

Non‐heme high‐spin (hs) {FeNO}8complexes have been proposed as important intermediates towards N2O formation in flavodiiron NO reductases (FNORs). Many hs‐{FeNO}8complexes disproportionate by forming dinitrosyl iron complexes (DNICs), but the mechanism of this reaction is not understood. While investigating this process, we isolated a new type of non‐heme iron nitrosyl complex that is stabilized by an unexpected spin‐state change. Upon reduction of the hs‐{FeNO}7complex, [Fe(TPA)(NO)(OTf)](OTf) (1), the N‐O stretching band vanishes, but no sign of DNIC or N2O formation is observed. Instead, the dimer, [Fe2(TPA)2(NO)2](OTf)2(2) could be isolated and structurally characterized. We propose that2is formed from dimerization of the hs‐{FeNO}8intermediate, followed by a spin state change of the iron centers to low‐spin (ls), and speculate that2models intermediates in hs‐{FeNO}8complexes that precede the disproportionation reaction.

 
more » « less
NSF-PAR ID:
10121962
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
49
ISSN:
1433-7851
Page Range / eLocation ID:
p. 17695-17699
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Non‐heme high‐spin (hs) {FeNO}8complexes have been proposed as important intermediates towards N2O formation in flavodiiron NO reductases (FNORs). Many hs‐{FeNO}8complexes disproportionate by forming dinitrosyl iron complexes (DNICs), but the mechanism of this reaction is not understood. While investigating this process, we isolated a new type of non‐heme iron nitrosyl complex that is stabilized by an unexpected spin‐state change. Upon reduction of the hs‐{FeNO}7complex, [Fe(TPA)(NO)(OTf)](OTf) (1), the N‐O stretching band vanishes, but no sign of DNIC or N2O formation is observed. Instead, the dimer, [Fe2(TPA)2(NO)2](OTf)2(2) could be isolated and structurally characterized. We propose that2is formed from dimerization of the hs‐{FeNO}8intermediate, followed by a spin state change of the iron centers to low‐spin (ls), and speculate that2models intermediates in hs‐{FeNO}8complexes that precede the disproportionation reaction.

     
    more » « less
  2. Abstract

    A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant.

     
    more » « less
  3. Abstract

    A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant.

     
    more » « less
  4. Abstract

    Reactivities of non‐heme iron(IV)‐oxo complexes are mostly controlled by the ligands. Complexes with tetradentate ligands such as [(TPA)FeO]2+(TPA=tris(2‐pyridylmethyl)amine) belong to the most reactive ones. Here, we show a fine‐tuning of the reactivity of [(TPA)FeO]2+by an additional ligand X (X=CH3CN, CF3SO3, ArI, and ArIO; ArI=2‐(tBuSO2)C6H4I) attached in solution and reveal a thus far unknown role of the ArIO oxidant. The HAT reactivity of [(TPA)FeO(X)]+/2+decreases in the order of X: ArIO > MeCN > ArI ≈ TfO. Hence, ArIO is not just a mere oxidant of the iron(II) complex, but it can also increase the reactivity of the iron(IV)‐oxo complex as a labile ligand. The detected HAT reactivities of the [(TPA)FeO(X)]+/2+complexes correlate with the Fe=O and FeO−H stretching vibrations of the reactants and the respective products as determined by infrared photodissociation spectroscopy. Hence, the most reactive [(TPA)FeO(ArIO)]2+adduct in the series has the weakest Fe=O bond and forms the strongest FeO−H bond in the HAT reaction.

     
    more » « less
  5. Abstract

    Reactivities of non‐heme iron(IV)‐oxo complexes are mostly controlled by the ligands. Complexes with tetradentate ligands such as [(TPA)FeO]2+(TPA=tris(2‐pyridylmethyl)amine) belong to the most reactive ones. Here, we show a fine‐tuning of the reactivity of [(TPA)FeO]2+by an additional ligand X (X=CH3CN, CF3SO3, ArI, and ArIO; ArI=2‐(tBuSO2)C6H4I) attached in solution and reveal a thus far unknown role of the ArIO oxidant. The HAT reactivity of [(TPA)FeO(X)]+/2+decreases in the order of X: ArIO > MeCN > ArI ≈ TfO. Hence, ArIO is not just a mere oxidant of the iron(II) complex, but it can also increase the reactivity of the iron(IV)‐oxo complex as a labile ligand. The detected HAT reactivities of the [(TPA)FeO(X)]+/2+complexes correlate with the Fe=O and FeO−H stretching vibrations of the reactants and the respective products as determined by infrared photodissociation spectroscopy. Hence, the most reactive [(TPA)FeO(ArIO)]2+adduct in the series has the weakest Fe=O bond and forms the strongest FeO−H bond in the HAT reaction.

     
    more » « less